На две пристани пойдет 2+2+4, а на строительство дорог не менее 2+5, если по перпендикуляру; итого не менее 11 больше 10. Если строить одну пристань в точке X, то оптимальному её расположению соответствует такая точка, для которой AX+XB минимальна. Эта точка находится так: отражаем B симметрично относительно реки, получая точку B', и проводим отрезок AB'. В пересечении с рекой и получается X. Ввиду равенства XB=XB', а также неравенства треугольника AX+XB'<=AB, получаем нужный вывод.Пусть река идёт по горизонтали, и это ось абсцисс. Тогда ординаты точек A и B отличаются на 3. Расстояние равно 5, и тогда абсциссы отличаются на 4 в силу теоремы Пифагора. Разность абсцисс у точек A, B' такая же, а разность ординат равна 2+5=7. Это значит, что сумма длин дорог равна AX+XB=AB'=корень из(7^2+4^2}=корень из(65) < 8,1, что проверяется возведением в квадрат. Тогда в лимит 10,1 с учётом стоимости постройки одной пристани мы укладываемся.
После знака равенства пишем: (X-2Y+3) (X-2Y+3)= А дальше надо раскрыть скобки и с этим, я надеюсь, Вы справитесь. Делается это так: сначала умножаем Х из первой скобки на все три слагаемых по очереди из второй скобки. То есть Х умножаем на Х. Получаем Х в квадрате. Дальше Х умножаем на (-2Y) получаем (-2ХY), и так далее, не забывая про знаки. После этого надо будет привести подобные члены. А это уж совсем просто: Например, у Вас там будет 2 подобных члена: (-6Y) и (-6Y). Вы их сложите и получите (-12Y). Все довольно просто.
ответ:в первый белый столбец из первого желтого третье, из второго столбца тоже 3
Во второй столбец все остальное
Объяснение: