(a^2+cb^2)(d^2+ce^2)=(ad+cbe)^2+c(ae-bd)^2 a^2d^2+a^2ce^2+cb^2d^2+c^2b^2e^2=a^2d^2+2adcbe+c^2b^2e^2+c(a^2e^2-2aebd+b^2d^2) a^2d^2+a^2ce^2+cb^2d^2+c^2b^2e^2=a^2d^2+2adcbe+c^2b^2e^2+ca^2e^2-2aebdc+cb^2d^2 Далее сокращаем одинаковые в левой и правой части. Сначала a^2d^2 a^2ce^2+cb^2d^2+c^2b^2e^2=2adcbe+c^2b^2e^2+ca^2e^2-2aebdc+cb^2d^2 в правой части одинаковые 2adbce с разными знаками ! удаляем a^2ce^2+cb^2d^2+c^2b^2e^2=c^2b^2e^2+ca^2e^2+cb^2d^2 далее сокращаем c^2b^2e^2 a^2ce^2+cb^2d^2=ca^2e^2+cb^2d^2 ну и уже легко увидеть, что слева и справа одно и то же. Сокращаем все, получаем 0=0
если log_2 (x-5)<0, левая часть отрицательна⇒неравенство не выполнено⇒log_2 (x-5)>0 (то есть x-5>1; x>6)⇒неравенство можно домножить на него⇒ log_2 (x-5)<1; x-5<2; x<7
ответ: (6;7)
Замечание, Есть как решить задачу намного проще.
Оказывается, неравенство log_a b> log_a c равносильно на ОДЗ неравенству (a-1)(b-c)>0
Записываем наше неравенство в виде 3log_(x-5) 2>3; log_(x-5) 2>log_(x-5) (x-5);
a^2d^2+a^2ce^2+cb^2d^2+c^2b^2e^2=a^2d^2+2adcbe+c^2b^2e^2+c(a^2e^2-2aebd+b^2d^2)
a^2d^2+a^2ce^2+cb^2d^2+c^2b^2e^2=a^2d^2+2adcbe+c^2b^2e^2+ca^2e^2-2aebdc+cb^2d^2
Далее сокращаем одинаковые в левой и правой части. Сначала a^2d^2
a^2ce^2+cb^2d^2+c^2b^2e^2=2adcbe+c^2b^2e^2+ca^2e^2-2aebdc+cb^2d^2 в правой части одинаковые 2adbce с разными знаками ! удаляем
a^2ce^2+cb^2d^2+c^2b^2e^2=c^2b^2e^2+ca^2e^2+cb^2d^2 далее сокращаем c^2b^2e^2
a^2ce^2+cb^2d^2=ca^2e^2+cb^2d^2 ну и уже легко увидеть, что слева и справа одно и то же. Сокращаем все, получаем
0=0