Объяснение:
300 мест в 1-м зале, 288 мест во 2-м зале.
x - количество мест в одном ряду в 1-м зале.
y - количество мест в одном ряду во 2-м зале.
Система уравнений:
300/x=288/y +2; 300/x=(288+2y)/y; 300y=288x+2xy |2
y=x+1
150(x+1)=144x+x(x+1)
150x+150=144x+x²+x
x²+145x-150x-150=0
x²-5x-150=0; D=25+600=625
x₁=(5-25)/2=-20/2=-10 - ответ не подходит по смыслу.
x₂=(5+25)/2=30/2=15 мест в одном ряду в 1-м зале.
y=15+1=16 мест в одном ряду во 2-м зале.
300÷15=20 рядов в 1-м зале.
288÷16=18 рядов во 2-м зале.
Дано:
S₁ – расстояние от села Вишневое до станции
S₂ = S₁ + 14 км – расстояние от села Яблоневое до станции
t₁ = 45 мин = 3/4 ч – время, за которое автобус доезжает от села Вишневое до станции
t₂ = t₁ + 5 мин = t₁ + 1/12 ч – время, за которое автомобиль доезжает от села Яблоневое до станции
V₁ – скорость автобуса
V₂ = V₁ + 12 км/ч – скорость автомобиля
Найти: V₁, V₂
Составим систему уравнений:
{ S₁ = V₁·t₁
{ S₂ = V₂·t₂
Вычтем первое уравнение из второго:
S₂ – S₁ = V₂·t₂ – V₁·t₁
Подставим соотношения из условия задачи:
S₁ + 14 – S₁ = (V₁ + 12)(t₁ + 1/12) – V₁·t₁
14 = V₁ / 12 + 12t₁ + 1
Подставим t₁ = 3/4 ч:
14 = V₁ / 12 + 12·3/4 + 1
14 = V₁ / 12 + 10
V₁ / 12 = 4
V₁ = 48 км/ч – скорость автобуса
Из условия задачи:
V₂ = V₁ + 12 = 48 + 12 = 60 км/ч – скорость автомобиля
ответ: скорость автобуса 48 км/ч, скорость автомобиля 60 км/ч.