М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Odesskiy2003
Odesskiy2003
22.02.2020 20:14 •  Алгебра

Распишите и объясните как делать эти два примера ​


Распишите и объясните как делать эти два примера ​

👇
Ответ:
dmitriytkach30
dmitriytkach30
22.02.2020

Хорошего дня =))))))))


Распишите и объясните как делать эти два примера ​
4,6(3 оценок)
Открыть все ответы
Ответ:
PoLyyKo
PoLyyKo
22.02.2020

1) Імовірність випадення числа меншого від 5 = 4/6=2/3, бо числа 1 2 3 4 задовольняют умову, а всього на кубику 6 чисел.

Імовірність випадення числа більшого за 4 = 2/6=1/3, бо числа 5 6 задовольняють умову, а всього на кубику 6 чисел.

Для отримання результату помножимо ймовірність виконання умови при першому кидку на ймовірність виконання умови при другому кидку: 2/3*1/3=2/9


2)Імовірність виконнная умови 5/6 при першому кидку і 1/6 при другому. Отримуємо 1/6*5/6=5/36


3)Імовірність випадення на кубику при першому киданні числа більшого ніж при другому киданні дорівнює 1/2-1/6=1/3, оскільки 1/6-імовірність випадення дубля. Наприклад, перший раз випало число 1. Імовірність випадення того самого числа при другому киданні дорівнює 1/6 (6 варіантів 1 з яких нас задовольняє).1/2 ми вказуємо, бо при киданні використовується один і той самий кубик, і кількість випадків, які нас задовольняють удвічі менша за тотальну кількість імовірних подій, тобто імовірність симетрична.

Отже, відповідь: 1/3

4,5(58 оценок)
Ответ:

Все таки не удержусь и для начала покажу красивый без метода мат индукции, а потом уже с методом мат. индукции.

Первый .(собственно то, как, возможно, была выведена эта формула)

Обозначим сумму ряда за S:

1*2!/2 + 2*3!/2^2 + 3*4!/2^3+...+n(n+1)!/2^n = S

Рассмотрим также вс сумму S1:

2!/2 +3!/2^2 + 4!/2^3 +...+(n+1)!/2^n = S1

Тогда не трудно убедится, что

S+2S1 = 3*2!/2 + 4*3!/2^2 + 5*4!/2^3+...+(n+2)(n+1)!/2^n =

= 3!/2 + 4!/2^2+ 5!/2^3+...+(n+2)!/2^n = 2*( 3!/2^2 + 4!/2^3 +...+(n+2)!/2^(n+1) =

= 2(S1 -2!/2 + (n+2)!/2^(n+1))

То есть получаем равенство:

S+2S1 = 2S1 -2! + (n+2)!/2^n

Замечаем, что 2S1 сокращается:

S = (n+2)!/2^n - 2

Что и требовалось доказать.

Второй (метод математической индукции)

Проверим, что тождество верно для n = 1:

1*2!/2 = 3!/2 - 2

1 = 3 - 2 - верно.

Предположим, что утверждение справедливо для n = t, то есть:

1*2!/2 + 2*3!/2^2 + 3*4!/2^3+...+t(t+1)!/2^t = (t+2)!/2^t - 2

Докажем его справедливость для n = t+1

То есть нужно доказать, что:

1*2!/2 + 2*3!/2^2 + 3*4!/2^3+...+t(t+1)!/2^t + (t+1)(t+2)!/2^(t+1) = (t+3)!/2^(t+1) - 2

Нетрудно заметить, что:

1*2!/2 + 2*3!/2^2 + 3*4!/2^3+...+t(t+1)!/2^t + (t+1)(t+2)!/2^(t+1) =

= (1*2!/2 + 2*3!/2^2 + 3*4!/2^3+...+t(t+1)!/2^t) + (t+1)(t+2)!/2^(t+1)  =

= (t+2)!/2^t - 2 + (t+1)(t+2)!/2^(t+1) = 2(t+2)!/2^(t+1) + (t+1)(t+2)!/2^(t+1) - 2 =

= (2+t+1)*(t+2)!/2^(t+1) - 2 = (t+3)((t+2)!/2^(t+1) - 2 = (t+3)!/2^(t+1) - 2

А значит, по принципу математической индукции, данное тождество доказано.

4,6(46 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ