Так как a, b, c - последовательные члены арифметической прогрессии, то b и с можно выразить через а и разность прогрессии d: Характеристическое свойство арифметической прогрессии: каждый член арифметической прогрессии, начиная со второго, равен полусумме предыдущего и последующего члена. Значит, нужно доказать, что: Выполняем преобразования: Выражаем b и с через а и d: Слева и справа записаны одинаковые выражения. Значит, заданные числа удовлетворяют характеристическому свойству и являются последовательными членами арифметической прогрессии
Нам дана 4-угольная пирамида, у которой все ребра равны. Значит, в основании у нее лежит квадрат. Пусть сторона квадрата равна а. Радиус круга, в который вписан квадрат, равен R = a/√2 = a√2/2 Боковые ребра пирамиды тоже равны а. Найдем ее высоту. Отрезок ОА от центра основания до угла равен радиусу, R = a/√2. OAS - это прямоугольный треугольник, AS = a; OA = a/√2. OS = H = √(AS^2 - OA^2) = √(a^2 - a^2/2) = √(a^2/2) = a/√2 = R Высота пирамиды равна радиусу описанной окружности ее основания. Это и означает, что этот радиус и есть радиус шара. То есть центр основания совпадает с центром шара.
решение на фотографии