М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
DOMINOSHKAWWWRU
DOMINOSHKAWWWRU
28.02.2021 18:57 •  Алгебра

0,237373 рационал или ироционал​

👇
Ответ:
Янина7005
Янина7005
28.02.2021

иррациональное число

4,4(99 оценок)
Открыть все ответы
Ответ:
еккаа
еккаа
28.02.2021
1) sinx - 1/2 >=0
sinx>=1/2
pi/6 + 2pi*k <=x<=5pi/6 + 2pi*k
sinx - 0.5 = cosx + 0.5
sinx - cosx = 1
cosx = sqrt(1 - sin^2(x))
sinx - sqrt(1 - sin^2(x)) = 1
sqrt(1 - sin^2(x)) = sinx - 1 -возведем в квадрат обе части
1 - sin^2(x) = sin^2(x) - 2sinx + 1
2sin^2(x) - 2sinx = 0
sinx*(sinx - 1) = 0
sinx = 0, x = pi*k - не входит в интервал pi/6 + 2pi*k <=x<=5pi/6 + 2pi*k
sinx = 1, x = pi/2 + pi*k - входит в интервал только одна точка, а именно:
x=pi/2 + 2pi*k
2) sinx - 1/2 < 0
sinx < 0.5
5pi/6 + 2pi*k < x < 13pi/6 + 2pi*k
0.5 - sinx = cosx + 0.5
-sinx = cosx - разделим все на (- cosx)
tgx = -1
x = - pi/4 + pi*k - входит в решение только x= -pi/4 + 2pi*k

ответ: x = pi/2 + 2pi*k, x = -pi/4 + 2pi*k

P.S. Для большего понимания выбора корней смотрите рисунок
Решить уравнение isinx-1/2i=cosx+12
4,6(50 оценок)
Ответ:
Kuanova2005
Kuanova2005
28.02.2021
Так, так, так. У линейной функции возрастание/убывание зависит от углового коэффицента k y=kx+m : если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором y=4- \frac{1}{3}x; k=- \frac{1}{3}. С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения x_1; x_2, два произвольных числа, но x_1\ \textless \ x_2 . Пусть мы имеем функцию y=f(x), тогда вычисляем значения функции в этих двух точках, имеем f(x_1) и f(x_2), так вот, если x_1\ \textless \ x_2; f(x_1)\ \textless \ f(x_2);, тогда функция возрастающая, если же x_1\ \textless \ x_2; f(x_1)\ \textgreater \ f(x_2), то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1)y=x^3+1; x_1=-2; f(x_1)=(-2)^3+1=-7; x_2=4;x_1\ \textless \ x_2 \\ f(x_2)=4^3+1=65; f(x_1)\ \textless \ f(x_2), т.е. функция возрастающая. А вот задание с y= \frac{x^2}{2} не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной) y= \frac{x^2}{2}; y'= \frac{2x}{2}=x;. Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка): x_1=1; x_2=2; x_1\ \textless \ x_2; f(x_1)= \frac{1}{2};f(x_2)=2; f(x_1)\ \textless \ f(x_2), функция возрастает, что и требовалось доказать.
4,5(65 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ