Объяснение:
Для того, чтобы вычислить площадь фигуры, ограниченной данными линиями, мы сперва должны построить их на графике
Теперь мы видим, что функцией y = 0, наша искомая фигура разбивается на две симметричные. Их площадь будет равна, то есть для того, чтобы вычислить площадь фигуры, нам достаточно найти площадь одной её половины и умножить на "2".
Получается, площадь равна удвоенному интегралу функции х^3 от 2 до 0.
2 * инт (х^3)dx = 2 * (x^4)/4.
Подставляем наши границы "2" и "0": 2 * (x^4)/4 = 2 * ((2^4)/4 - (0^4)/4) = 2 * 4 = 8.
ответ: S фигуры = 8.
варианта 2 как можно понимать эти выражения (запись в условии немного запутывает):
1.
2.
то есть роли не играет, потому что выражение имеет вид
сначала прибавляем выражение, а потом его вычитаем, ну а единица тут спокойно прибавляется и она в ответе.
upd. оказывается, что выражение, по всей видимости, такое:
если это так, то в условии, конечно, лучше ставить скобки
(х + 3,2) - (х + 4,5) =
= х + 3,2 - х - 4,5 =
= (х - х) + (3,2 - 4,5) = - 1,3
1,4 (а - 2) - (6 - 2а) =
= 1,4а - 2,8 - 6 + 2а =
= (1,4а + 2а) - (2,8 + 6) = 3,4а - 8,8