Дано 2019-значное число, записанное с цифр 1, 3 и 5. Делитель этого числа называется веселым, если его последняя цифра равна 7. Докажите, что меньше половины всех делителей числа являются веселыми.
посмотреть в олимпиаде
Комментарий/решение:
пред. Правка 4 210 месяца 16 дней назад #
Пусть
- все делители данного числа, отличные от 1 и от самого числа.
Рассмотрим пары
и
Произведение в каждой паре даёт данное число. Если оба делителя в одной паре - веселые, то данное число оканчивается на 9, что невозможно. Следовательно, в каждой паре не больше одного веселого делителя. Весёлых не больше [n/2]. А делителей, включая 1 и само число, n + 2
Miron.yurk
d1,d2dn
Дано:∆ АВС - прямоугольный, угол С =90º
СК - бисскетриса.
ВК=30
АК=40
Решение задачи начнем с рисунка.
Биссектриса внутреннего угла треугольника делит сторону на отрезки, пропорциональные прилежащим сторонам.
Это относится ко всем треугольникам.
Из этого отношения следует отношение катетов:
ВС:АС=30:40=3:4
Пусть коэффициент отношения катетов будет х.
Тогда
ВС=3х
АС=4х
По т.Пифагора
АВ²=ВС²+АС²
70²=9х²+16х²=25х²
х²=196
х=14
АС=4*14=56 с
ВС=3*14=42 см
Опустим из точки К перпендикуляр КН на АС ( расстояние от точки до прямой -перпендикуляр)
КН║ВС, ∠ А общий
∆ АКН подобен ∆АВС
Из подобия
АВ:АК=ВС:КН
70:40=42:КН
КН=1680:70=24 см
Тем же из подобия КМВ и АВС найдем МК=24 (можно проверить).
Но треугольники ВМК и АНК не равны, как может показаться.
В них равные катеты лежат против разных углов.
АН=56-24=32 см
ВМ=42-24=18 см
Найдя КН, можно не находить отдельно расстояние КМ.
МКНС - квадрат, т.к. ∠С=90º по условию, ∠КАМ=∠КНС=90º по построению, а диагональ -биссектриса угла С
Подробнее - на - ответ:
Объяснение:
А
Объяснение:
ответ А
- сохраняется значит последний ответ отпадает так как там чётная степень
8 и 2 в кубе не 64, значит ответ А