М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sanya1130
sanya1130
14.02.2020 22:01 •  Алгебра

Надо написать с
Просто 20 слов ​


Надо написать сПросто 20 слов ​

👇
Ответ:
2004080111
2004080111
14.02.2020

-1530

Объяснение:

-10a(10a+10)+(10a-10)(10+10a)=\\=-100a^2-100a+100a^2-100=-100a-100=-100(a+1)=-100*15,3=-1530

4,6(99 оценок)
Открыть все ответы
Ответ:
modovonchik
modovonchik
14.02.2020
Так как всего учебников 6, их них 4 в переплете (то есть всего 2 учебника без переплета), то при выборе 4 учебников как минимум 2 из них будут в переплете. Следовательно, менее 2 учебников в переплете выбрать невозможно.

Найдем вероятность появления 2 учебников в переплете среди взятых:
 - благоприятные исходы: произведение числа выбрать 2 учебника с переплетом из 4 и числа выбрать 2 учебника без переплета из 2:
 - все возможные исходы: число выбрать 2 учебника из 6
Каждый выбор считаем сочетанием, так как порядок выбор не важен. Вероятность рассчитываем как отношение числа благоприятных исходов к общему числу всех возможных исходов:
P_4(2)= \dfrac{C_4^2\cdot C_2^2}{C_6^4} = \dfrac{ \frac{4!}{2!\cdot(4-2)!} \cdot \frac{2!}{2!\cdot(2-2)!} }{ \frac{6!}{4!\cdot(6-4)!} } = \dfrac{ \frac{4!}{2!\cdot2!} \cdot \frac{2!}{2!\cdot0!} }{ \frac{6!}{4!\cdot2!} } = \dfrac{ \frac{4\cdot3}{2\cdot1} \cdot 1 }{ \frac{6\cdot5}{2\cdot1} } = 0.4

Вероятность появления 3 учебников в переплете среди взятых: - благоприятные исходы: произведение числа выбрать 3 учебника с переплетом из 4 и числа выбрать 1 учебник без переплета из 2: - все возможные исходы: число выбрать 3 учебника из 6
P_4(3)= \dfrac{C_4^3\cdot C_2^1}{C_6^4} = \dfrac{ \frac{4!}{3!\cdot(4-3)!} \cdot \frac{2!}{1!\cdot(2-1)!} }{ \frac{6!}{4!\cdot(6-4)!} } = \dfrac{ \frac{4!}{3!\cdot1!} \cdot \frac{2!}{1!\cdot1!} }{ \frac{6!}{4!\cdot2!} } = \dfrac{ 4 \cdot 2 }{ \frac{6\cdot5}{2\cdot1} } = \dfrac{8}{15}

Вероятность появления 4 учебников в переплете среди взятых: - благоприятные исходы: произведение числа выбрать 4 учебника с переплетом из 4 и числа выбрать 0 учебников без переплета из 2: - все возможные исходы: число выбрать 4 учебника из 6
P_4(4)= \dfrac{C_4^4\cdot C_2^0}{C_6^4} = \dfrac{ \frac{4!}{4!\cdot(4-4)!} \cdot \frac{2!}{0!\cdot(2-0)!} }{ \frac{6!}{4!\cdot(6-4)!} } = \dfrac{ \frac{4!}{4!\cdot0!} \cdot \frac{2!}{0!\cdot2!} }{ \frac{6!}{4!\cdot2!} } = \dfrac{ 1 \cdot 1 }{ \frac{6\cdot5}{2\cdot1} } = \dfrac{1}{15}

Очевидно, что выбрать 5 и более учебников с переплетом невозможно.

Закон распределения имеет вид:
\begin{array}{ccccc}X&2&3&4\\P&0.4& \frac{8}{15} & \frac{1}{15} \end{array}
4,4(95 оценок)
Ответ:
Егорка2910
Егорка2910
14.02.2020
Любое шестицифровое число , не содержащее в записи 0 можно превратить в шестицифровое число с одинаковыми цифрами (111 111, либо 222 222, либо... либо 999 999)

если предположить что ни одна из уникальных 9-ти возможных цифр не повторится больше 5 раз, то мы можем составить число не более чем 9*5=45 -ти цифровое, а значит хотя бы одна цифра точно будет в записи числа повторятся шесть и более раз

итого, берем  выбираем любую цифру которая встречается шесть или более раз, зачеркиваем остальные цифры и повторы выбранной цифры, чтоб осталось ровно 6 вхождений выбранной цифры.
доказано
4,4(72 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ