4.Найдите сумму всех натуральных. a) нечётный двухзначных чисел b) сумму двухзначных кратных чисел c) двузначное число, делённую на 5, чтоб остаток получился 4
а)существует несколько решения этой задачи. Я предлагаю следующий. Рассмотрю весь набор не пусть чётных двузначных чисел как арифметическую прогрессию. Пусть (a)n - арифметическая прогрессия. Тогда a(1) = 11, a(2) = 13, d = a(2) - a(1) = 2.
Задача тогда сводится к тому. чтобы найти сумму n-первых членов данной арифметической прогрессии.
Всего двузначных нечётных чисел у нас 45. значит надо найти сумму 45 членов этой прогресии.
S(45) =(( 2a(1) + 44d)/2) * 45 =( 2*11+ 88)/2) * 45 = 2475. Вот мы и нашли сумму всех нечётных двузначных чисел.
1) Верно. У пар-грамма смежные углы в сумме равны 180, поэтому внешний угол при одном угле равен второму углу. 2) √2 ~ 1,414, 2 + 1,414 = 3,414 < 3,5 - неверно. Сумма двух любых сторон треугольника должна быть больше третьей стороны. 3) Площадь круга S(кр) = pi*D^2/4 ~ 0,785*D^2 Квадрат, вписанный в круг, имеет диагональ, равную диаметру. d = D, сторона квадрата a = d/√2 = D/√2 Площадь квадрата S(кв) = a^2 = D^2/2 Отношение S(кв)/S(кр) = (D^2/2)/(0,785*D^2) = 1/(2*0.785) ~ 0,63 Нет, неверно. 4) Верно. Этот треугольник - прямоугольный, по т. Пифагора 2 + 6 = 8 При этом √8 = 2*√2, то есть катет равен половине гипотенузы. Значит, этот катет находится против угла 30 градусов.
б)a(n)=3n+9
a(1)=12
a(30)=99
S=(a(1)+a(30))/2*n=(12+99)/2*30=1665
Объяснение:
а)существует несколько решения этой задачи. Я предлагаю следующий. Рассмотрю весь набор не пусть чётных двузначных чисел как арифметическую прогрессию. Пусть (a)n - арифметическая прогрессия. Тогда a(1) = 11, a(2) = 13, d = a(2) - a(1) = 2.
Задача тогда сводится к тому. чтобы найти сумму n-первых членов данной арифметической прогрессии.
Всего двузначных нечётных чисел у нас 45. значит надо найти сумму 45 членов этой прогресии.
S(45) =(( 2a(1) + 44d)/2) * 45 =( 2*11+ 88)/2) * 45 = 2475. Вот мы и нашли сумму всех нечётных двузначных чисел.