М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Aldiyar26
Aldiyar26
11.04.2020 23:57 •  Алгебра

класс Степень с рациональным и действительным показателем


класс Степень с рациональным и действительным показателем
класс Степень с рациональным и действительным показателем

👇
Ответ:
molchanets98p085or
molchanets98p085or
11.04.2020

1.Б 2.Б 3.А 4.Д 5.Б 6.А 7А. 8.Г 9.Г 10. Б

4,7(91 оценок)
Открыть все ответы
Ответ:
melitatomashko
melitatomashko
11.04.2020

m= 0 и m =0,25

Объяснение:

Дана функция:

y=3·|x+8|–x²–14·x–48.

Так как в функции участвует модульное выражение, то рассмотрим в зависимости знака под модульного выражения.

1) x+8≤0 ⇔ x ≤ –8 ⇒ |x+8|= –(x+8). Тогда левый кусок функции имеет вид:

y₁=3·|x+8|–x²–14·x–48=3·(–(x+8))–x²–14·x–48= –3·x–24–x²–14·x–48 =

= –x²–17·x–72 – это парабола, у которой ветви направлены вниз и с вершиной в точке

x= –(–17)/(2·(–1))= –8,5. Значение в вершине:

y₁(–8,5)= –( –8,5)²–17·(–8,5)–72=0,25.

Чтобы построит график определим нули параболы:

–x²–17·x–72=0 ⇔ x²+17·x+72=0 ⇔ (x+8)·(x+9)=0 ⇔

⇔ x₁ = –9 (<–8), x₂ = –8 (=–8).

2) x+8≥0 ⇔ x≥–8 ⇒ |x+8|=x+8. Тогда правый кусок функции имеет вид:

y₂=3·|x+8|–x²–14·x–48=3·(x+8)–x²–14·x–48=3·x+24–x²–14·x–48=

= –x²–11·x–24 – это парабола, у которой ветви направлены вниз и с вершиной в точке

x= –(–11)/(2·(–1))= –5,5. Значение в вершине:

y₂(–5,5)= –(–5,5)²–11·(–5,5)–24=6,25.

Чтобы построит график определим нули параболы:

–x²–11·x–24=0 ⇔ x²+11·x+24=0 ⇔ (x+8)·(x+3)=0 ⇔

⇔ x₃ = –8 (=–8), x₄ = –3 (>–8).

ответом будут (прямые зелёного цвета) только: m= 0 и m =0,25.  

Точки пересечения прямых y=m (при m= 0 и при m =0,25) с графиком функции отмечены красными точками.


Постройте график функции y=3lx+8l-x^2-14x-48 и определите, при каких значениях m прямая y=m имеет с
4,8(65 оценок)
Ответ:

m= 0 и m =0,25

Объяснение:

Дана функция:

y=3·|x+8|–x²–14·x–48.

Так как в функции участвует модульное выражение, то рассмотрим в зависимости знака под модульного выражения.

1) x+8≤0 ⇔ x ≤ –8 ⇒ |x+8|= –(x+8). Тогда левый кусок функции имеет вид:

y₁=3·|x+8|–x²–14·x–48=3·(–(x+8))–x²–14·x–48= –3·x–24–x²–14·x–48 =

= –x²–17·x–72 – это парабола, у которой ветви направлены вниз и с вершиной в точке

x= –(–17)/(2·(–1))= –8,5. Значение в вершине:

y₁(–8,5)= –( –8,5)²–17·(–8,5)–72=0,25.

Чтобы построит график определим нули параболы:

–x²–17·x–72=0 ⇔ x²+17·x+72=0 ⇔ (x+8)·(x+9)=0 ⇔

⇔ x₁ = –9 (<–8), x₂ = –8 (=–8).

2) x+8≥0 ⇔ x≥–8 ⇒ |x+8|=x+8. Тогда правый кусок функции имеет вид:

y₂=3·|x+8|–x²–14·x–48=3·(x+8)–x²–14·x–48=3·x+24–x²–14·x–48=

= –x²–11·x–24 – это парабола, у которой ветви направлены вниз и с вершиной в точке

x= –(–11)/(2·(–1))= –5,5. Значение в вершине:

y₂(–5,5)= –(–5,5)²–11·(–5,5)–24=6,25.

Чтобы построит график определим нули параболы:

–x²–11·x–24=0 ⇔ x²+11·x+24=0 ⇔ (x+8)·(x+3)=0 ⇔

⇔ x₃ = –8 (=–8), x₄ = –3 (>–8).

ответом будут (прямые зелёного цвета) только: m= 0 и m =0,25.  

Точки пересечения прямых y=m (при m= 0 и при m =0,25) с графиком функции отмечены красными точками.


Постройте график функции y=3lx+8l-x^2-14x-48 и определите, при каких значениях m прямая y=m имеет с
4,6(2 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ