Для того, чтобы найти функцию, обратную данной. надо х и у поменять местами, и вновь выразить у через х: y = (2x-1) / (x+3) x = (2y-1) / (y+3) - выражаем теперь у через х: x(y+3) = 2y - 1 y(2-x) = 3x+1 y = (3x+1) / (2-x) - обратная функция. Теперь необходимо ее построить. 1) Найти точки экстремума и (или) точки перегиба: y' = [3*(2-x) + (3x+1) ] / (2-x)^2 = [6-3x+3x+1] / (2-x)^2 = 7/(2-x)^2 - производная всегда положительная, значит функция у возрастает на всей области определения. 2) ОДЗ: 2-x # 0, x # 2. Значит прямая х=2 - ассимптота функции у. 3) Нули функции: y=0, 3x+1=0, x=-1/3. Точка (-1/3; 0). 4) Пересечение с осью Оу: х=0, у=1/2. Точка (0; 1/2)
Объяснение:
1б)
4ˣ⁺¹+7*2ˣ-2=0
4ˣ *4¹+7*2ˣ-2=0, 2ˣ>0
4*2²ˣ+7*2ˣ-2=0, пусть 2ˣ=а, тогда 4а²+7а-2=0
Д=в²-4ас, Д=7²-4*4*(-2)=81
х₁=(-в+√Д):2а , х₁=(-7+9):8=0,25 ,
х₂=(-в-√Д):2а , х₂=(-7-9):8=-2, не подходит, т.к. 2ˣ>0.
2ˣ=0,25 или 2ˣ=0,5² или х=2
ответ. х=2.
2а) 0,5²ˣ⁻⁴ <0,25
0,5²ˣ⁻⁴ <0,5², т.к. 0< 0,5<1, то знак неравенства меняется,
2х-4>2
2х >6
х >3.
ответ. х >3.