Решение: Из теоремы Пифагора мы знаем, что в прямоугольном треугольнике: с^2=a^2+b^2, можно найти стороны катетов. Для этого один из катетов пусть будет обозначен а, а второй: b= а+2, подставим данные этой задачи и найдём катеты этого. 10^2=a^2+(a+2)^2 100=a^2+a^2+4a+4 Решим данное уравнение: 2a^2+4a-96=0 приведём это квадратное уравнение к простомц квадратному уравнению, разделив его на 2, a^2+2a-48=0 a1,2=-1+-sqrt(1+48)=-1+-7 a1=-1+7=6 a2=-1-7=-8 (не соответствует условию задачи) Второй катет b=6+2=8
1. Преобразуем:
{cosx * cosy = 1/4; (1)
{ctgx * ctgy = -3/4; (2)
{cosx * cosy = 1/4;
{(cosx / sinx) * (cosy / siny) = -3/4;
{cosx * cosy = 1/4;
{(cosx * cosy) / (sinx * siny) = -3/4;
{cosx * cosy = 1/4;
{(1/4) / (sinx * siny) = -3/4;
{cosx * cosy = 1/4;
{1 / (sinx * siny) = -3;
{cosx * cosy = 1/4;
{sinx * siny = -1/3;
{cos^2(x) * cos^2(y) = 1/16;
{sinx * siny = -1/3.
2. Обозначим:
sinx = p;
siny = q;
{(1 - p^2)(1 - q^2) = 1/16;
{pq = -1/3;
{1 - q^2 - p^2 + p^2q^2 = 1/16;
{pq = -1/3;
{1 - q^2 - p^2 + 1/9 = 1/16;
{pq = -1/3;
{p^2 + q^2 = 151/144;
{pq = -1/3;
{(p + q)^2 - 2pq = 151/144;
{(p - q)^2 + 2pq = 151/144;
{(p + q)^2 + 2/3 = 151/144;
{(p - q)^2 - 2/3 = 151/144;
{(p + q)^2 = 55/144;
{(p - q)^2 = 247/144;
{p + q = ±√55/12; (3)
{p - q = ±√247/12. (4)
Обозначим:
√247/24 + √55/24 = s;
√247/24 - √55/24 = r;
arcsin(s) = α;
arcsin(r) = β.
Сложением и вычитанием уравнений (3) и (4) для каждого из четырех случаев найдем значения p и q:
1) (p; q) = (-s; r);
2) (p; q) = (r; -s);
3) (p; q) = (-r; s);
4) (p; q) = (s; -r).
Из уравнения (1) следует, что косинусы имеют одинаковый знак, поэтому для x и y выбираем одновременно левые или правые четверти:
1) (x; y) = (-α + 2πk; β + 2πk); (π + α + 2πk; π - β + 2πk);
2) (x; y) = (β + 2πk; -α + 2πk); (π - β + 2πk; π + α + 2πk);
3) (x; y) = (-β + 2πk; α + 2πk); (π + β + 2πk; π - α + 2πk);
4) (x; y) = (α + 2πk; -β + 2πk); (π - α + 2πk; π + β + 2πk).
Объяснение:
должно быть правельно