1. ДАНО Y = x² - 6*x + 5 - уравнение параболы. НАЙТИ Ymin = ? - наименьшее значение. РЕШЕНИЕ Чтобы найти координаты вершины параболы преобразуем уравнение к виду Y=(x - a)² +b Y = (x² - 2*3x + 9) - 9 + 5 = (x-3)² - 4. Вершина параболы: А(3;-4) Ay = - 4 - наименьшее значение - ОТВЕТ Точки пересечения с осями координат можно получить решением квадратного уравнения. D = 16, x1 = 1, x2 = 5 Рисунок к задаче в приложении. 2. График параболы на рис. 2. Корни - х1 = - 1б х2 = 3, вершина А(1;4). Но для решения задачи график не обязателен. Достаточно подставить значение У=3 и решить квадратное уравнение. 3 = - x² + 2*x + 3 - x² + 2*x = - x*(x-2) = 0 ОТВЕТ: х1 = 0, х2 = 2 Рисунок в приложении. 3. Каноническое уравнение параболы: Y= (x-a)² + b. Координаты вершины такой параболы: Ах = - а, Ау = b. Y = (x-3)² - уравнение параболы - дано. Вершина с координатами: А(3;0), и ветви параболы - вверх.∫ Рисунок в приложении.
1. Дано: |y=3x-1 |x+2y=5 Решение Подставим первое уравнение во второе:
Подставляем полученное значение в первое уравнение: y=3x-1, при x=1 y=3-1 y=2 ответ: (1;2)
2. Дано |x+5y=13 |3x-y=-9 Решение Выразим из первого уравнения переменную x: x=13-5y
Подставим полученное выражение во второе уравнение: 3*(13-5y)-y=-9 Раскроем скобки: 39-15y-y=-9 Перенесем неизвестное значение в левую часть, а константы в правую: -16y=-9-39 y=(-48)/(-16) y=3
Подставим полученное значение в первое преобразованное уравнение: x=13-5y, при y=3 x=13-5*3 x=13-15 x=-2
Если х=3 то 3х-5= 3*3-5=4
Объяснение:
Если х=-1 то 3х-5=3*(-1)-5=-8
Если х=0 то 3х-5=3*0-5=-5