2π+4
Объяснение:
x²+y² ≤4x+4y-4
x²+y²-4x-4y+4 ≤0
(x²-4x+4)+(y²-4y+4 )≤4
(x-2)²+(y-2)² ≤2²-круг с центром O(2;2) , S=πR²=4π
y ≥ |x-2| -плоскость, ограниченная линиями y=x-2 и y=-(x-2).
Плоскость будет находится выше или на уровне линий(неравенство нестрогое)
Площадь фигуры-площадь пересечения круга и плоскости.
Разделим круг пополам, проведя линию y=2.Заметим, что верхняя часть круга полностью попала в плоскость.Нижняя же только частично.Если внимательно присмотреться, то можно заметить, что в плоскость попали только 2 прямоугольных треугольника.Найдем их площадь:
S=ab/2, где a,b-катеты.Но они равны радиусу круга, значит,
S=R^2/2=2
Таких треугольников два, значит, Sобщ=4
Складываем площадь верхнего полукруга и 2-х треугольников:
2π+4
x(5+x)=0
x=0
x=-5
б) 3х2 - 27 = 0;
3(x2-9)=0
x=3
x=-3
в) 3х2 + 7 = 0
решений нет в дейтвительныъ числах
.2. Решите уравнение по формуле х1, 2 =
а) х2 -11х + 24 = 0;
ч12=(11+-√121-96)/2=11+-5/2= 8 3
x=3
x=8
б) 2х2-х-15 = 0
x12=(1+-√1+120)/4=(1+-11)/4=3 -10/4
;в) x2 + х - 4 = 0.
X12=(-1+-√1+16)/2=(-1+-√17)/2
3. Решите уравнение:а) 4х2+ х + 7 = 0;
D=1-4*4*7<0
решений нет
б) 4х2 - 36х + 81 = 0;
D=1296-1296=0
(2x-9)^2=0
x=9/2
в) 4х2 - 55х + 110 = 0.
D=3025-1760=1265
x12=(55+-√1265)/8
4. Найдите корни уравнения (2х + 5)2 + (5x - 3)2 = 75 + 2х
4x2+20x+25+25x2-30x+9=75+2x
29x2-8x-41=0
D=64+4756=4820
x12=(8+-√4820)/58
.5. Для всякого арешите уравнение х2- (4а + 1)х + 4а = 0.
D=16a²+8a+1-16a=16a²-8a+1=(4a-1)²
при ф=1/4 одно решение
при других два решения
x=(4a+1)+-!4a-1!/2
6*. При каких bуравнение 2х2 + bх + 8 = 0 имеет один корень? Для каждого такогоbнайдите этот корень.
D=b²-64=0
b=8
b=-8
2x2+8x+8=0
x=-2
2x2-8x+8=0
x=2