М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Anastasia13577
Anastasia13577
30.11.2022 03:25 •  Алгебра

Қолжазба мәтінін теретін екі қызметкер бірігіп жұмыс істесе, мәтінді 6 сағатта теріп бітіреді. Егер алдымен бірінші қызметкер қолжазбаның жартысын терсе, содан соң екіншісі қалған жартысын
терсе, онда жұмысты аяқтауға 12,5 сағат керек. Қызметкерлер жеке жұмыс істесе, бүкіл мәтінді қанша
уақытта тереді?
комектесындерша лайк басаам берем​

👇
Ответ:
sofaTV
sofaTV
30.11.2022

Екінші қызметкер 15 минутта

Объяснение:

4,6(63 оценок)
Открыть все ответы
Ответ:
abdullah94
abdullah94
30.11.2022

Тут разобрано два варианта, когда требуется найти вероятность, что "хотя бы три детали из пяти дефектные" и когда "ровно три детали из пяти дефектные".

 

Всего у нас изделий n = 18, изделий имеющих скрытый дефект m = 6.

 

Выбрать 5 изделий из 18 мы можем C^{5}_{18}

 

Выбрать три дефектных, мы можем C^{3}_{6}, остальные 2 можем выбрать C^{2}_{15}

 

Вероятность события, равна отношению всех исходов к числу благоприятствующих исходов.

 

p(хотя бы 3 из 5 - дефектные детали) = \frac{C^{3}_{6}*C^{2}_{15} }{C^{5}_{18}} = \frac{(\frac{6!}{3!*3!})*(\frac{15!}{13!*2!})}{\frac{18!}{13!*5!}} =\\\\ \frac{4*5*7*15}{7*4*17*18} = \frac{5*15}{17*18} = \frac{5*5}{17*6} = \frac{25}{102}

 

Если в задаче требуется найти вероятность, когда у нас ровно три дефектных изделия, то меняется только количество какими мы можем вытащить оставшиеся две детали, так как нам теперь не нужно учитывать дефектные. Теперь это будет C^{2}_{12}

 

Соответственно:

p(3 из 5 - дефектные детали) = \frac{C^{3}_{6}*C^{2}_{12} }{C^{5}_{18}} = \frac{(\frac{6!}{3!*3!})*(\frac{12!}{10!*2!})}{\frac{18!}{13!*5!}} =\\\\ \frac{4*5*11*6}{7*4*17*18} = \frac{5*11}{7*17*3} = \frac{55}{357}

 

4,6(59 оценок)
Ответ:
scritinomerok
scritinomerok
30.11.2022

Тут разобрано два варианта, когда требуется найти вероятность, что "хотя бы три детали из пяти дефектные" и когда "ровно три детали из пяти дефектные".

 

Всего у нас изделий n = 18, изделий имеющих скрытый дефект m = 6.

 

Выбрать 5 изделий из 18 мы можем C^{5}_{18}

 

Выбрать три дефектных, мы можем C^{3}_{6}, остальные 2 можем выбрать C^{2}_{15}

 

Вероятность события, равна отношению всех исходов к числу благоприятствующих исходов.

 

p(хотя бы 3 из 5 - дефектные детали) = \frac{C^{3}_{6}*C^{2}_{15} }{C^{5}_{18}} = \frac{(\frac{6!}{3!*3!})*(\frac{15!}{13!*2!})}{\frac{18!}{13!*5!}} =\\\\ \frac{4*5*7*15}{7*4*17*18} = \frac{5*15}{17*18} = \frac{5*5}{17*6} = \frac{25}{102}

 

Если в задаче требуется найти вероятность, когда у нас ровно три дефектных изделия, то меняется только количество какими мы можем вытащить оставшиеся две детали, так как нам теперь не нужно учитывать дефектные. Теперь это будет C^{2}_{12}

 

Соответственно:

p(3 из 5 - дефектные детали) = \frac{C^{3}_{6}*C^{2}_{12} }{C^{5}_{18}} = \frac{(\frac{6!}{3!*3!})*(\frac{12!}{10!*2!})}{\frac{18!}{13!*5!}} =\\\\ \frac{4*5*11*6}{7*4*17*18} = \frac{5*11}{7*17*3} = \frac{55}{357}

 

4,4(92 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ