В левой части неравенства угадывается формула квадрата суммы, всё, что осталось, переносим в правую часть.
Если нужно, чтобы у неравенства не было решений, правая часть должна была отрицательной:
Вспоминаем, что нужно найти такие b, чтобы такое неравенство выполнялось при всех a. Относительно a левая часть либо линейная функция (при b = 1/2), либо квадратичная.
Разбираем случаи:
1) b = 1/2. Тогда при всех a должно быть так: Понятно, что это выполняется не при всех a, так что b = 1/2 в ответ входить не должно.
2) b не равно 1/2. Квадратный трёхчлен должен принимать только положительные значения. Как известно, так будет, если: 1. Коэффициент при a^2 положительный и 2. Дискриминант отрицательный.
y = 7x - 6sinx + 8
y' = 7 - 6cosx
7 - 6cosx = 0
6cosx = 7
cosx = 7/6, 7/6 больше 1, поэтому корней нет
Раз критических точек нет, то подставляем только границы промежутка:
y(-π/2) = 7*(-π/2) - 6sin(-π/2) + 8 = -7π/2 + 6 + 8 = -7π/2 + 14 = (28-7π)/2
y(0) = 7*0 + sin0 + 8 = 8
Сравним 8 и (28-7π)/2, чтобы определить наибольшее значение:
8 - (28-7π)/2 = (16 - 28 + 7π)/2 = (7π - 12)/2 ≈ (21 - 12)/2 = 9/2 > 0
8 - (28-7π)/2 > 0
8 > (28-7π)/2
ответ: наибольшее значение функции y = 7x - 6sinx + 8 на отрезке [-π/2; 0] равно 8