В1) F(x)=3x+x³/3+C Подставляем координаты точки М и находим С 6=3*1+1³/3+С ответ:
В2) F(x)=x³/3+3x²/2+C Поскольку F'(x)=х²+3х, то для нахождения точек экстремума приравняем ее 0 х²+3х=0 x(x+3)=0 Произведение равно 0, когда хотя бы один из множителей равен 0. Поэтому x₁=0 x₂+3=0 x₂=-3 Определяем знаки интервалов + - + ---------------₀---------------₀----------------> -3 0 В точке -3 производная меняет знак с плюса на минус, значит, это точка максимума В точке 0 производная пеняет знак с минуса на плюс, значит, это точка минимума На промежутке (-∞;-3] и [0;∞) функция возрастает На промежутке [-3;0] функция убывает
С1) Найдем производную F'(x)=(х⁵+3х²-cosх+17)'=5x⁴+sinx F'(x)=f(x) для всех х∈(-∞;+∞) Следовательно, F(x) есть первообразная для f(x). Что и требовалось доказать
Прямоугольник вырезает из данного прямоугольного треугольника еще два прямоугольных треугольника и они тоже будут равнобедренными, т.к. острые углы во всех треугольниках по 45° Если обозначить одну из сторон прямоугольника (х), то вторая сторона прямоугольника будет равна (а-х), где (а) --- катет исходного прямоугольного треугольника. Периметр прямоугольника = 2х + 2(а-х) = 2х+2а-2х = 2а ---то есть равен сумме катетов данного прямоугольного треугольника, а у данного треугольника стороны не изменны, т.е. длины сторон постоянны, значит и периметр – величина постоянная.
4√5
Объяснение:
потому что дествительный