Объяснение: Размещением из n элементов по х называется любое упорядоченное подмножество из х элементов множества, состоящего из n различных элементов. Число размещений без повторений определяется по формуле
Aₙˣ= n!/(n-x)! Значит A²ₙ= n!/(n-2)!
Eсли комбинации из n элементов по x отличаются только составом элементов, то такие неупорядоченные комбинации называют сочетаниями из n элементов по x. Число сочетаний без повторений из n элементов по x определяется по формуле:
Cₙˣ= n!/ x!(n-x)! значит Сₙ²= n!/ 2!(n-2)!
Поэтому Сₙ² : Аₙ²= n!/ 2!(n-2)! : n!/(n-2)! = 1/2! = 1/2, т.к. 2!= 1·2=2
Нам задана функция графиком данной функции будет гипербола, "сдвинутая" влево на 2. (см. приложенные файлы) свойства: ∪ E(f): ∪ нули функции отсутствуют, функция бесконечно стремится к нулю, но это значение НИКОГДА не достигается. промежутки знакопостоянства: принимает только отрицательные значения на интервале: только положительные на интервале: функция монотонно убывает при x>-2 и при x<-2 функция не является ни четной, ни нечетной функция непериодическая. функция не ограничена ни сверху, ни снизу. претерпевает разрыв в точке х=-2.
ответ: нет решения
Объяснение: Размещением из n элементов по х называется любое упорядоченное подмножество из х элементов множества, состоящего из n различных элементов. Число размещений без повторений определяется по формуле
Aₙˣ= n!/(n-x)! Значит A²ₙ= n!/(n-2)!
Eсли комбинации из n элементов по x отличаются только составом элементов, то такие неупорядоченные комбинации называют сочетаниями из n элементов по x. Число сочетаний без повторений из n элементов по x определяется по формуле:
Cₙˣ= n!/ x!(n-x)! значит Сₙ²= n!/ 2!(n-2)!
Поэтому Сₙ² : Аₙ²= n!/ 2!(n-2)! : n!/(n-2)! = 1/2! = 1/2, т.к. 2!= 1·2=2
1/2 ≠ 32, значит уравнение не имеет решения