f(x) = x³ - 3x [0 , 2]
Найдём производную :
f'(x) = (x³)' - 3(x)' = 3x² - 3
Найдём нули производной :
3x² - 3 = 0
3(x² - 1) = 0
x² - 1 = 0
x₁ = - 1 x₂ = 1
Только x = 1 ∈ [0 ; 2]
Определим знаки производной на отрезке [0 , 2] :
- +
[0][1][2]
min
В точке x = 1 функция имеет минимум, который является наименьшим значением на заданном отрезке. Найдём это наименьшее значение :
f(1) = 1³ - 3 * 1 = 1 - 3 = - 2
Найдём значения функции на концах отрезка :
f(0) = 0³ - 3 * 0 = 0
f(2) = 2³ - 3 * 2 = 8 - 6 = 2
ответ : наименьшее значение равно - 2 , а наибольшее равно 2 .
1.
1)
38² - 64 = 38² - 8² = (38 - 8)(38 +8) = 30 * 46 = 1380,
2.
1)
2в² - 18 = 2 * (в² - 9) = 2 * (в - 3)(в + 3),
3)
81х² - 18ху + у² + 63х - 7у = (81х² - 18ху + у²) + (63х - 7у) =
= (9х - у)² + 7*(9х - у) = (9х - у)(9х - у + 7),
4)
m² + n² + 2mn = (m + n)².
3.
а)
(8 - 2n)(8 + 2n) + (9 + 2n)² - 64 = 64 - 4n² + 81 + 36n + 4n² - 64 =
= 36n + 81 = 9(4n + 9),
б)
(3х - 8)² + (4х - 8)(4х + 8) = 9х² - 48х + 64 + 16х² - 64 = 25х² - 48х,
при х=-2:
25 * (-2)² - 48 * (-2) = 100 + 96 = 196,
4.
1 число - х,
2 число - (х+2),
(х+2)² - х² = 188,
х² + 4х + 4 - х² = 188,
4х = 184,
х = 46 - 1 число,
х+2 = 46+2 = 48 - 2 число