1) Вычислим длины сторон:
|BC| =√(x C −x B ) ^2 +(y C −y B ) ^2 =√(6−(−1))^ 2 +(21-(−3)) ^2 =√7 ^2 +24^ 2 =√49+576 =√625=√25.2) Составим уравнения сторон:
BC: x−xB/xC−xB=y−yB/yC−yB ⇔ x−(−1)6−(−1)=y−(−3)21−(−3) ⇔ x+17=y+324 ⇔ 24x−7y+3=0.6) Вычислим площадь треугольника:
S =1/2 |(x B −x A )(y C −y A )−(x C −x A )(y B −y A )∣ =1/2 ∣(−1−15)(21−9)−(6−15)(−3−9)∣=1/2 ∣(−16)⋅12−(−9)⋅(−12)∣ =12 ∣ −192−108∣=|−300|/2 =300/2 =150.10) Составим уравнения медиан:
AA1 : x−x A /x A 1 −x A =y−y A /y A 1 −y A ⇔ x−152.5−15 =y−99−9 ⇔ x−15−12.5 =y−90 ⇔ y−9=0.14) Составим уравнения высот:
AA 2 : x−x A /y C −y B =y−y A /x B −x C ⇔ x−1521−(−3) =y−9−1−6 ⇔ x−1524 =y−9−7 ⇔ 7x+24y−321=0;Объяснение:
1.Функция -отношение между элементами, при котором изменение в одном элементе влечёт изменение в другом.Область определения функции-множество, на котором задаётся функция.
2. Начальная функция это y0. Неопределенный интеграл-это совокупность всех первообразных данной функции.
Свойства неопределенного интеграла
1)Производная неопределенного интеграла равна подынтегральной функции; дифференциал от неопределенного интеграла равен подынтегральному выражению, т.е.
2)Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной, т.е.
3)Постоянный множитель можно вынести из-под знака интеграла, т.е. если то
4)Неопределенный интеграл от алгебраической суммы двух функций равен алгебраической сумме интегралов от этих функций в отдельности, т.е.
Интегрирование- название, данное ряду приемов, используемых для вычисления различных ИНТЕГРАЛОВ.
3.
А)-3
Б) 3
В) -7
Г) 6
#2 значения не верны в задаче