Возьмем за x- скорость 2 туриста. Тогда скорость первого будет x+2. Напишем время, за которое они добрались. время первого 40/(х+2) время второго 40/х Из условия ясно, что первый доехал быстрее, чем второй, значит мы можем записать уравнение:
- = 1 приводим к общему знаменателю:
= 1 Заметим, что x не равен 0, икс не равен -2. По свойству пропорций мы приходим к такому уравнению: 80=x^2+2x x^2+2x-80=0 По формуле четного корня находим дискриминант: D=p^2-ac=1+80=81; Корень из D=9 x1=-1-9=-10 (скорость не может быть отрицательной, поэтому посторонний корень) x2=-1+9=8 Итак, скорость второго туриста 8+2=10. ответ: скорость первого туриста 10 км/ч; скорость второго туриста 8км/ч
Область допустимых значений (ОДЗ): x >= -4. x - 4*V(x + 4) - 1 < 0 ( V - корень квадратный). x - 1 < 4*V(x + 4) Правая часть неравенства <= 0 для всех х из ОДЗ, левая часть < 0 при x < 1, то есть неравенство выполняется при x < 1, с учетом ОДЗ получаем -4 <= х < 1. Пусть x >= 1. Возведем обе части неравенства в квадрат (x - 1)^2 < 16*(x + 4) x^2 - 2*x + 1 < 16*x + 64 x^2 - 18*x - 63 < 0 Равенство верно на интервале между корнями уравнения. Корни х1 = -3, х2 = 21, неравенство выполняется для -3 < х < 21, с учетом x >= 1 получаем 1 <= х < 21. Объединяем условия -4 <= х < 1 и 1 <= х < 21, получаем ответ: -4 <= х < 21.
1)44
2)15
3)7/9
4)8 4/9
Объяснение:
Готово