Пусть число, состоящее из цифр 3, имеет длину n. Тогда его можно расписать как сумму геометрической прогрессии: 3+3*10^1+3*10^2++3*10^(n-1)=3*(10^n-1)/(10-1)=(10^n-1)/3 Это число должно делиться на 17. Значит, и число 10^n-1 должно делиться на 17. 10^n-10(mod 17) или 10^n1 (mod 17) Как известно, из малой теоремы Ферма следует, что a^(p-1)1 (mod p), где p - некоторое простое число, а НОД(a,p)=1. Здесь a=10, p=17. Следовательно, наименьшим n является p-1=16, при котором число, состоящее из 16 троек делится на 17.
Будем отсчитывать угол по часовой стрелке. Т.к. часовая стрелка проходит 360° (полный круг) за 12 часов=720 минут, то ее скорость передвижения 360/720=0,5 градуса в минуту. Минутная стрелка проходит 360° за 60 минут, поэтому ее скорость 360/60=6 градусов в минуту. Угол между стрелками всегда от 0 до 180°. За 25 минут часовая поворачивается на 25*0,5=12,5°, а минутная на 25*6=150°. Пусть изначально между стрелками был угол х. Возможны две ситуации: 1) Изначально часовая стрелка находилась до минутной. Тогда через 25 минут угол между стрелками станет х+150-12,5=х+137,5 если 0≤х<42,5 и станет 360-(х+137,5)=222,5-х, если 42,5≤х≤180. В первом случае получаем уравнение х+137,5=х, которое не имеет решений, а во втором 222,5-х=х, откуда х=111,25°. 2) Часовая стрелка находилась после минутной. Тогда через 25 минут угол между стрелками станет равным 150-х-12,5=137,5-х в случае если 0≤х<137,5 и равным х-137,5 если 137,5≤х≤180. В первом случае получим уравнение 137,5-х=х, откуда х=68,75°. Во втором случае х-137,5=х не имеет решения. Итак, ответ: это угол 111,25° или 68,75°.
1)(0,5-2х)(2х+0,5)+(0,7+х)^2=0,92-0,1х
0.25-4x^2+0.49+1.4x+x^2-0.92+0.1x=0 |*100
25-400x^2+49+140x+100x^2-92+10x=0
-300x+150x-18=0 |3
-100x+50x-6=0
D=2500-2400=100
x1=-50+10/-200=40/200=20/100=0.2
x2=-50-10/-200=60/200=0.3
2)х^2-х+3/4=0 |*4
4x^2-4x+3=0
D=16-48=-32 корней нет
3)-0,04+х^2=0
x^2=0.04
x1=0.2
x2=-0.2
5)х^2+3,2х-9=0 |*10
10x^2+32x-90=0
D=1024+3600=4624 68
x1=-32+68/20=1.8
x2=-32-68/20=-5
4)1/6х^2-х+3/4=0 |*12
2x^2-12x+9=0
D=144-72=72
x1=12+sqrt72/4=12+6sqrt2/4=6(2+sqrt2)/4=6+3sqrt2/4
x2=12-sqrt72/4=6-3sqrt2/4
sqrt - квадратный корень