Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:
1/х+1/у=1/6
3х/5+2у/5=12
Выделим х во втором уравнении:
3х/5+2у/5=12
15х+10у=300
3х+2у=60
х=(60-2у)/3
Подставим значение х в первое уравнение:
3/(60-3у)+1/у=1/6
18у+360-12у=60у-2у²
2у²-54у+360=0
у²-27у+180=0
D=9
у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.
у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.
ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.
1) найдем те значения параметра, при которых кв.трехчлен имеет корни:
4a^2 - 4*2a >= 0
a^2 - 2a >= 0 ---> a∈(-∞; 0] U [2; +∞)
2) по т.Виета сумма корней уравнения равна (2а)
произведение корней уравнения тоже (2а)
с т.Виета можно так записать сумму квадратов корней:
(x1)^2 + (x2)^2 = (x1)^2 + (x2)^2 + 2*(x1)*(x2) - 2*(x1)*(x2) =
(x1 + x2)^2 - 2*(x1)*(x2) = (2a)^2 - 2*(2a) = 4a^2 - 4a
вопрос задачи можно записать так: при каких (a)
2a = 4a^2 - 4a
4a^2 - 6a = 0
2a^2 - 3a = 0
a(2a - 3) = 0
a1 = 0 ∈(-∞; 0] U [2; +∞)
a2 = 1.5 ∉(-∞; 0] U [2; +∞)
ответ: а=0