М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kuchera2
kuchera2
12.04.2020 04:08 •  Алгебра

Ребят решить эти простые уравнения или хоть половину, номер 30.5 на фото все уравнения


Ребят решить эти простые уравнения или хоть половину, номер 30.5 на фото все уравнения

👇
Ответ:
arlanout
arlanout
12.04.2020

братан, скачай photomath

4,5(92 оценок)
Ответ:
borovitskii2014
borovitskii2014
12.04.2020

Тут два столбика, если что, то остальные можно решить по примеру моего решения))


Ребят решить эти простые уравнения или хоть половину, номер 30.5 на фото все уравнения
Ребят решить эти простые уравнения или хоть половину, номер 30.5 на фото все уравнения
4,7(6 оценок)
Открыть все ответы
Ответ:
ppn01012014
ppn01012014
12.04.2020
\frac{x-2}{3-x} \geq 0;
Область допустимых значений (ОДЗ): x≠3 (иначе в знаменателе будет 0).
Находим точки, в которых неравенство обращается в равенство.
\frac{x-2}{3-x} =0 \rightarrow x=2
Рассматриваем поведение в окрестности точки х=2, для чего вычисляем значение функции при х=1.9 и х=2.1, подставляя эти значения в исходное выражение.
y_1=\frac{x-2}{3-x} = \frac{-1.9-2}{3-1.9}= \frac{-3.9}{1.1}; y_10;
Осталось проверить, что происходит со знаком функции после точки х=3, составляющей ОДЗ.
y_3=\frac{x-2}{3-x} = \frac{3.1-2}{3-3.1}= \frac{1.1}{-0.1}; y_3
Анализируя знаки на участках (-∞;2]; [2;3); (3;∞) мы видим, что только знак у2, соответствует знаку исходного неравенства, т.е. ответом будет  [2;3)
4,5(68 оценок)
Ответ:
Vika2002588
Vika2002588
12.04.2020
\frac{x-2}{3-x} \geq 0;
Область допустимых значений (ОДЗ): x≠3 (иначе в знаменателе будет 0).
Находим точки, в которых неравенство обращается в равенство.
\frac{x-2}{3-x} =0 \rightarrow x=2
Рассматриваем поведение в окрестности точки х=2, для чего вычисляем значение функции при х=1.9 и х=2.1, подставляя эти значения в исходное выражение.
y_1=\frac{x-2}{3-x} = \frac{-1.9-2}{3-1.9}= \frac{-3.9}{1.1}; y_10;
Осталось проверить, что происходит со знаком функции после точки х=3, составляющей ОДЗ.
y_3=\frac{x-2}{3-x} = \frac{3.1-2}{3-3.1}= \frac{1.1}{-0.1}; y_3
Анализируя знаки на участках (-∞;2]; [2;3); (3;∞) мы видим, что только знак у2, соответствует знаку исходного неравенства, т.е. ответом будет  [2;3)
4,6(68 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ