М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
katizh
katizh
10.11.2020 16:54 •  Алгебра

1. АВСАВС правильная призма,
В = 3, AA = 4.
Найдите S.
бок.​

👇
Ответ:
machismo
machismo
10.11.2020

C=7

Объяснение:

AA+B=C

4+3=7

4,6(97 оценок)
Открыть все ответы
Ответ:
ksenia5051
ksenia5051
10.11.2020

Объяснение:

6.  данная функция является сложной.   корень четной степени - это значит, что значение  под корнем должно быть неотрицательным. т.е.

log_{6}(4x-1) 0    решаем данное неравенство.  

log_{6}(4x-1) log_{6} 1

4x-11\\4x2\\x\frac{1}{2}

далее,  функция логарифмическая,  следовательно величина под знаком логарифма должна быть больше нуля.  

4x-10\\4x1\\x\frac{1}{4}

рассматриваем оба неравенства и находим область пересечения интервалов

\left \{ {{x\frac{1}{2} } \atop {x\frac{1}{4} }} \right.    x∈ [ \frac{1}{2};  +∞   [

7.     y=log_{0.6} (2-3x)    значение под знаком логарифма должно быть больше нуля.  2-3х>0   2>3x   x<2/3

рассмотрим условие при котором    у>1

log_{0.6} (2-3x) 1\\log_{0.6} (2-3x) log_{0.6} 0.6\\2-3x0.6\\-3x -1.4\\x< 1.4:3\\x

находим область пересечения обоих условий,

\left \{ {{x    x∈ ] -∞; 7/15 [

8.   y=log_{0,6} (2x-1)\\   область определения функции.    

 2х-1>0      x>1/2

вводим дополнительное условие

log_{0,6} (2x-1) log_{0,6} x\\2x-1 x\\x-10\\x1\\

\left \{ {{x1/2} \atop {x1}} \right.     x∈ ] 1;  +∞ [

4,5(52 оценок)
Ответ:
basirovdanil
basirovdanil
10.11.2020

Дана функция y=\frac{x^3+4}{x^2} .

Производная её равна: y' = (3x^2*x^2 - 2x*(x^3 + 4))/x^4 = (x^3 - 8)/x^3.

Приравняем её нулю ( при х не равном 0 можно только числитель).

x^3 - 8 = 0.

x^3 = 8,   х = ∛8 = 2. Это критическая точка.

С учётом разрыва функции при х = 0 имеем 3 промежутка монотонности функции: (-∞; 0), (0; 2) и (2; +∞).

На промежутках находим знаки производной.

Находится производная, приравнивается к 0, найденные точки выставляются на числовой прямой; к ним добавляются те точки, в которых производная не определена.  

Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.

x =     -1         0         1          2           3

y' =  9      -         -7    0       0,7037.

• Минимум функции в точке: х = 2, у = 3.

• Максимума функции нет.

• Возрастает на промежутках: (-∞; 0) U (2; ∞).

• Убывает на промежутке: (0; 2).

4,7(53 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ