По определению модуля: |x+1|=x+1, при х+1≥0, т.е при x≥ - 1. Поэтому строим график g(x)=x²-3(x+1)+x на [-1;+∞), упрощаем: g(x)=x²-2x-3 на [-1;+∞). Строим часть параболы, ветви вверх, первая точка (-1;0) и далее вправо точки (0;-3) (1;-4)(2;-3)(3;0) (4;5)... Вершина в точке (1;-4)
|x+1|=-x-1 при х+1< 0, т.е при х < -1.
Поэтому строим график g(x)=x²-3(-x-1)+x на (-∞;-1), упрощаем: g(x)=x²+4x+3 на (-∞;-1). Строим часть параболы, ветви вверх, Вершина в точке (-2;-1) Парабола проходит через точки (-5; 8) (-4;3) (-3;0) (-2;-1) - вершина и направляется к точке (-1;0)
-x-sin(-x)=-x+sinx=-(x-sinx)
нечетная
3) x^2-cosx
(-х)²-сos(-x)=x²-cosx
четная
4) x^3+sinx
(-x)³+sin(-x)=-x³-sinx=-(x³+sinx)
нечетная
5) 1-cosx/1+cosx
(1-сos(-x))/(1+cos(-x))=(1-cosx)/(1+cosx)
четная
6) tgx+1/tgx-1
tg(-x)+1)/(tg(-x)-1)=(-tgx+1)/(-tgx-1)=[-(tgx-1)]/[-(tgx+1)]=(tgx-1)/(tgx+1)
ни четная,ни нечетная
7) x+sinx/x-sinx
(-x+sin(-x))/(-x-sin(-x))=(-x-sinx)/(-x+sinx)=[-(x+sinx)]/[-(x-sinx)]=
=(x+sinx)/(x-sinx)
четная
8) x^2-sin^2x/1+sin^2x
[(-x)²-sin²(-x)]/[1+sin²(-x)]=(x²-sin²x)/(1+sin²x)
четная