ответ: у = -x^2+2(a-1)x+a^2. График - парабола, ветви которой вниз.
Раз два корня, то график пересекает ось Ох в двух точках, значит, вершина параболы должна быть в верхней полуплоскости. А раз число 1 находится между корнями,
то у (1) > 0
Имеем: y(1) = -1 + 2(а-1) + а^2
-1 + 2(а-1) + а^2 > 0
-1 + 2a - 2 + a^2 > 0
a^2 + 2a - 3 > 0
(a + 3)(a - 1) >0
a Є (- бесконечность; -3) U (1; +бесконечность)
2) D = (2 - m)^2 +4m + 12 = 4 - 4m + m^2 + 4m +12 =
= m^2 + 16 >0
(x1)^2 + (x2)^2 = (x1 + x2)^2 - 2x1x2
x1 + x2 = m - 2
x1x2 = -m - 3
(x1)^2 + (x2)^2 =(m - 2)^2 - 2(-m - 3) = m^2 - 4m + 4 + 2m + 6 =
= m^2 - 2m + 10.
Объяснение:
Минимальное значение будет при m = 2/2 = 1
Пара чисел а = 1, b = 2 является решением второй системы уравнений
3a + b = 5
а - 2b = - 3.
Объяснение:
Решаем методом подстановки.
Первая система уравнений:
Пусть а = 1, b = 2
1) 3a - 3b = 3·(1 - 2) = 3 · (-1) = -3 - не подходит, т.к. не равно 1.
Пусть а = 2, b = 1
1) 3a - 3b = 3·(2 - 1) = 3 · 1 = 3 - не подходит, т.к. не равно 1.
Вторая система уравнений:
Пусть а = 1, b = 2
1) 3a + b = 3· 1 + 2 = 5 - подходит, т.к. 5 = 5;
2) а - 2b = 1 - 2· 2 = 1 - 4 = - 3 - подходит, т.к. - 3 = - 3.
Пара чисел а = 1, b = 2 является решением второй системы уравнений
3a + b = 5
а - 2b = - 3.