М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ДЭМКО
ДЭМКО
26.01.2020 03:30 •  Алгебра

Быстр полусумма чисел x и 5 равна их произведению

👇
Ответ:
dimandra
dimandra
26.01.2020

Объяснение:

\frac{x+5}{2}=5*x\ |*2\\ x+5=10x\\9x=5\ |:9\\x=\frac{5}{9}.

4,7(14 оценок)
Открыть все ответы
Ответ:
lena101992
lena101992
26.01.2020

<!--c-->

Преобразим заданное уравнение:

x3+12x2−27x=a

С производной построим график функции y=x3+12x2−27x.

1. Введём обозначение f(x)=x3+12x2−27x.

Найдём область определения функции D(f)=(−∞;+∞).

2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:

f′(x)=(x3+12x2−27x)′=3x2+24x−27.

Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.

Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:

3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1

Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.

Если производная функции в критической (стационарной) точке:

1) меняет знак с отрицательного на положительный, то это точка минимума;

2) меняет знак с положительного на отрицательный, то это точка максимума;

3) не меняет знак, то в этой точке нет экстремума.

Итак, определим точки экстремума:

При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при  −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При  −9<x<1 имеем отрицательную производную, при

Объяснение:

4,4(66 оценок)
Ответ:
HeLLDeViLL
HeLLDeViLL
26.01.2020

Исследуйте на четность функцию :

1)  y =    f(x) =  - 8x + x² +  x³

2)  y =   f(x)  = √(x³ + x²) - 31*| x³ |

ни четные ,ни нечетные

Объяснение:

1)  

f(x) =  - 8x + x² +  x³ ;  Область Определения Функции: D(f)  = R

функция ни чётная ,ни нечётная

проверяем:

Функция является четной, когда f(x)=f(-x) , нечетной, когда f(-x)=-f(x)

а) f(-x) =  - 8*(-x) +(- x)² +(- x)³ =  8x + x² -  x³   ≠  f(-x)

Как видим, f(x)≠f(-x), значит функция не является четной.

б)  

f(-x)  ≠ -  f(-x) →  функция не является нечетной

- - - - - -

2)

y =   f(x)  = √(x³ + x²) - 31*| x³ | ,

D(f) : x³ + x² ≥ 0 ⇔ x²(x+1)  ≥ 0 ⇒ x ≥ -1 * * * x ∈ [ -1 ; ∞) * * *

ООФ  не симметрично  относительно  начало координат

* * *  не определен , если  x ∈ ( -∞ ; - 1) * * *

функция ни чётная ,ни нечётная

4,8(16 оценок)
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ