к сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.
общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:
1) Если это прямоугольник (длина и ширина), то S0=a*b; S=1,2a*1,1b=1,32ab=1,32*S0 Площадь увеличится на 32%. Если же это треугольник, то речь идёт о основании и высоте. S0=a*h/2; S=1,2a*1,1h/2=1,32*S0 Увеличение все равно на 32% 2) a+b=56; a/3=b/4 4a=3(56-a); 7a=3*56=7*24 a=24; b=56-a=56-24=32 3) (4^6*9^5+6^9*120)/(8^4*3^12-6^11)= (2^12*3^10+2^9*3^9*2^3*3*5)/ (2^12*3^12-2^11*3^11)= (2^10*3^10*(4+4*5))/(2^11*3^11*(6-1)= 24/(6*5)=4/5=0,8 4) Было х яиц, взяли х/2, осталось тоже х/2. Второй раз взяли х/4, осталось х/4. Третий раз взяли х/8, осталось х/8, и это было 10 яиц. x/8=10; x=80 яиц было в корзине. Если же брали 4 раза половину остатка, то было 160.
ответ: ниа.
объяснение:
к сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.
общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:
сos px = a; sin gx = b; tg kx = c; ctg tx = d.