Якщо число x є розв'язком як нерівності x>−4, так і нерівності х<5, тоді воно є розв'язком подвійної нерівності −4<x<5.
Множину усіх чисел, що задовільняють подвійній нерівності −4<x<5 називають числовим проміжком і позначають: (−4;5).
Зобразимо проміжок на малюнку. Точки малюємо виколотими, оскільки вони не належать проміжку.
51_t02(1).png
Розглянемо інші проміжки.
−4≤x≤5 або x∈[−4;5]. Читається: «Проміжок від −4 до 5, включаючи −4 та 5».
51_t02(4).png
−4≤x<5 або x∈[−4;5). Читається: «Проміжок від −4 до 5, включаючи −4».
51_t02(2).png
−4<x≤5 або x∈(−4;5]. Читається: «Проміжок від −4 до 5, включаючи 5».
51_t02(3).png
Дано функцію f(x) = (x^2-8x)/(x+1)
Знаходимо найбільше і найменше значення даної функції на проміжку [-5,-2].
f(-5) = ((-5)^2-8*(-5))/(-5+1) = 65/(-4) = -16,25.
f(-2) = ((-2)^2-8*(-2))/(-2+1) = 20/(-1) = -20.
Визначаємо точки екстремуму даної функції.
Знаходимо первісну:
f'(x) = (2x-8)*(x+1) - 1*(x^2-8x))/((x+1)^2) = (x^2 + 2x - 8)/((x + 1)^2).
Прирівнюємо їі до 0 (достатьно чисельник):
x^2 + 2x - 8 = 0, Д = 4+4*8 = 36, х1 = (-2 - 6)/2 = -4, х2 = (-2 + 6)/2 = 2.
Знаходимо знаки первісної:
х = -5 -4 1 2 3
y' = 0,4375 0 -1,25 0 0,4375 .
У точці х = -4 маємо максимум функції,
f(-4) = ((-4)^2-8*(-4))/(-4+1) = 48/(-3) = -16.
Відповідь:
- найбільше значення даної функції на проміжку [-5,-2] дорівнює -16,
- найменше значення даної функції на проміжку [-5,-2] дорівнює -20,
- максимум функції у точці х = -4,
- мінімум функції у точці х = 2.
Вот надеюсь