Объяснение:1)0, 36 =(0,6)²=(-0,6)²
2)9/25 = (3/5)²= (-3/5)²
3) — 27 = (-3)³
4) 0, 0625 = (0,25)²=(-0,25)²=(-0,5)⁴= (0,5)⁴
1)Найдем общий знаменатель:7(х-1)(х+1) и каждую дробь умножим на множитеь,которого у этой дроби не хватает. Так мы избавимся отдроби:
7(х-1)(х-4)-7•10=2•(х²-1)
7х²-28х-7х+28-70=2х²-2
7х²-2х²-28х-7х+28-70+2=0
5х²-35х-40=0
х²-7х-8=0
D=49+32=81
x1=(7-9)/2=-1, x2=(7+9)/2=8
2)(x+3)(x+1)-10(x-3)=24
x²+x+3x+3-10x+30-24=0
x²-6x-3=0
D=36+12=48
x1=(6-4√3)/2=3-2√3, x2=3+2√3
3) (x-1)(x-2)+(4-x)(x+1)=6
x²-2x-x+2+4x+4-x²-x=6
0=0
4)(x-3)(x-1)+(x+12)(x+2)=15
x²-x-3x+3+x²+2x+12x+24=15
2x²+10x+12=0
x²+5x+6=0
D=25-24=1
x1=(-5-1)/2=-3, x2=(-5+1)/2=-2
1)Решение системы уравнений х=8
у=1
2)Решение системы уравнений х=20
у=15
3)Решение системы уравнений х=1
у= -10
4)Решение системы уравнений х=20
у=3
5)Решение системы уравнений х=2
у=2
Объяснение:
1)Решите систему уравнений: {x+y=9 x-2y=6
Умножим второе уравнение на -1 и решим методом алгебраического сложения:
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
x+y=9
-х+2у= -6
Складываем уравнения:
х-х+у+2у=9-6
3у=3
у=1
Подставим значение у в любое из двух уравнений системы и вычислим х:
x+y=9
х=9-у
х=9-1
х=8
Решение системы уравнений х=8
у=1
2)Решите систему уравнений :-x+2y=10 3y-x=25
Умножим первое уравнение на -1 и решим методом алгебраического сложения:
х-2у= -10
3y-x=25
Складываем уравнения:
х-х-2у+3у= -10+25
у=15
Подставим значение у в любое из двух уравнений системы и вычислим х:
3y-x=25
3*15-х=25
-х=25-45
-х= -20
х=20
Решение системы уравнений х=20
у=15
3)Решите систему уравнений: -x-y=9 3x-y=13
Умножим первое уравнение на 3 и решим методом алгебраического сложения:
-3х-3у=27
3x-y=13
Складываем уравнения:
-3х+3х-3у-у=27+13
-4у=40
у= -10
Подставим значение у в любое из двух уравнений системы и вычислим х:
-x-y=9
-х=9+у
х=-у-9
х=10-9
х=1
Решение системы уравнений х=1
у= -10
4)Решите систему уравнений: x-y=17 5x+y=103
Умножим первое уравнение на -5 и решим методом алгебраического сложения:
-5х+5у= -85
5x+y=103
Складываем уравнения:
-5х+5х+5у+у= -85+103
6у=18
у=3
Подставим значение у в любое из двух уравнений системы и вычислим х:
x-y=17
х=17+у
х=17+3
х=20
Решение системы уравнений х=20
у=3
5)Решите систему уравнений: 3x-7y= -8 2x+5y=14
Разделим второе уравнение на 2 для удобства вычислений:
2x+5y=14/2
х+2,5у=7
Выразим х через у в этом уравнении, подставим выражение в первое уравнение и вычислим у:
х=7-2,5у
3(7-2,5у)-7y= -8
21-7,5у-7у= -8
-14,5у= -8-21
-14,5у= -29
у= -29/-14,5
у=2
Подставим значение у в любое из двух уравнений системы и вычислим х:
2x+5y=14
2х=14-5у
2х=14-5*2
2х=4
х=2
Решение системы уравнений х=2
у=2
ответ: 1) 0,6^2
2) (3/5)^2
3) (-3)^3
4) 0,25^2.
Объяснение: