1) смежные: ∠1 и ∠2
2) вертикальные: ∠1 и ∠3, ∠5 и ∠7
3) внутренние односторонние:∠4 и ∠5
4) соответственные: ∠4 и ∠8, ∠3 и ∠7
5) внутренние накрест лежащие: нет среди предложенных углов.
6) внешние накрест лежащие: ∠1 и ∠7, ∠2 и ∠8
Объяснение:
∠4 и ∠8 - 4 соответственные
∠1 и ∠2 - 1 смежные
∠4 и ∠5 - 3 внутренние односторонние
∠1 и ∠3 - 2 вертикальные
∠1 и ∠7 - 6 внешние накрест лежащие
∠3 и ∠7 - 4 соответственные
∠2 и ∠8 - 6 внешние накрест лежащие
∠5 и ∠7 - 2 вертикальные
∠4 и ∠6 и ∠3 и ∠5 - внутренние накрест лежащие
Уравнение:
(В+14)/(В+3)=(В+7)/В+37/88
Проблема в том, что оно не решается в целых числах.
Если домножить на 88*B*(B+3), то получится
88*B*(B+14) = 88(B+3)(B+7) + 37*B*(B+3)
88*B^2 + 88*14*B = 88(B^2 + 10B + 21) + 37*B^2 + 37*3*B
88*B^2 + 88*14*B = 88*B^2 + 88*10*B + 21*88 + 37*B^2 + 111*B
Вычитаем 88*B^2 слева и справа и умножаем числа
1232*B = 37*B^2 + 880*B + 111*B + 1848
37*B^2 - 241*B + 1848 = 0
А теперь находим дискриминант
D = 241^2 - 4*37*1848 = 58081 - 273504 = -215423 < 0
Решений нет.
Но даже если мы что-то напутали, и D = +215423, или
D = 58081 + 273504 = 331585
Все равно это не квадрат целого числа, и B иррационально.