для меня это самое понятное... надеюсь
Объяснение:
Предположим, что нам нужно составить квадратное уравнение, корнями которого были бы числа x1 и x2. Очевидно, что в качестве искомого уравнения можно выбрать уравнение
a(х — x1)(х — x2) = 0, (1)
где а — любое отличное от нуля действительное число. С другой стороны, каждое квадратное уравнение с корнями x1 и x2 можно записать в виде (1).
Таким образом, формула (1) полностью решает поставленную выше задачу. Из всех квадратных уравнений корни x1 и x2 имеют уравнения вида (1) и только, они.
Пример. Составить квадратное уравнение, корни которого равны 1 и — 2.
ответ. Корни 1 и —2 имеют все квадратные уравнения вида
а(х — 1)(х + 2) = 0,
или
ах2 + ах — 2а = 0,
где а — любое отличное от нуля действительное число. Например, при а = 1 получается уравнение
х2 + х — 2 = 0.
3 или 4 слагаемых с минусами.
Объяснение:
Я уже решал эту задачу.
Мы можем поставить 1, 2 или 3 минуса.
Если поставить один или три минуса, то получится:
(a - b + c + d)^2 = ((a+c+d) - b)^2 = (a+c+d)^2 - 2b(a+c+d) + b^2
Или, с тремя минусами:
(a - b - c - d)^2 = (a - (b+c+d))^2 = a^2 - 2a(b+c+d) + (b+c+d)^2
В обоих случаях получается три слагаемых с минусами.
Если же поставить два минуса, то получится:
(a + b - c - d)^2 = ((a+b) - (c+d))^2 = (a+b)^2 - 2(a+b)(c+d) + (c+d)^2 =
= (a+b)^2 - 2(ac+bc+ad+bd) + (c+d)^2
Здесь получается 4 слагаемых с минусом.