А) q=12/-3=-4 б) c3=c2*q=12*(-4)=-48 в) c(n)=c1*q^(n-1)=-3*(-4)^(n-1)=3/4*(-4)^n г) c6=3/4*(-4)^6=3*4^5=3*1024=3072 д) Так как для произвольного члена прогрессии c(n) не выполняется ни равенство с(n+1)>c(n), ни равенство c(n+1)<c(n), то прогрессия не является ни возрастающей, ни убывающей. e) Это прогрессия -3, -12, -48,, т.е. прогрессия c c1=-3 и знаменателем q=4 ж) Одна, указанная выше. Другие прогрессиии имеют другой знаменатель q, поэтому даже если у них с1=-3, то другие члены с нечётными номерами не будут совпадать с членами данной прогрессии.
если х - количество дней работы, то можно составить уравнение: (54+6)(х-1)=54*х+18 (54+6) - птому, что в день изготавливали на 6 деталей больше нормы (х-1) - потому, что они за день день до срока изготовили боьше нормы 54*х - сколько должны были изготовить при нормальной работе в срок +18 - т.к. изготовили на 18 деталей больше необходимого
получаем уравнение 54х-54+6х-6=54х+18 отсюда: 6х=18+54+6 отсюда х=13 ( т.к. они выполнили план за 1 день до срока, то кол-во дней равно х-1=12)
Также можно число х, принять кол-во дней, за которые рабочие управились, тогда уравнение будет иметь вид: (54+6)*х=54*(х+1)+18 решается аналогично