Нужно использовать следующие свойства числовых неравенств:
1. К обеим частям верного числового неравенства можно прибавить одно и то же число и получится верное числовое неравенство, т.е.:
если а < b и с - любое число, то a + c < b + c.
2. Обе части верного числового неравенства можно умножить (разделить) на одно и то же положительное число, при этом получиться верное числовое неравенство; если же число отрицательное, то знак неравенства изменится на противоположный, т.е.:
если а < b и с > 0, то ac < bc;
если а < b и с < 0, то ac >bc.
Таким образом, если а < b, то: 2,5а < 2,5b (2,5 > 0),
Из условия следует что поєтому 1) неверно => т.е. первое утверждение неверно --контпример а=-1<0, a^3=(-1)^3=-1<0 2) неверно, числа a и b разных знаков (а отрицательно, b положительно) , значит их произведение в любом случае отрицательно, т.е. быть больше 1 не может 3) верно квадрат любого выражения число неотрицательное поэтому для любого a а так как => и 4) неверное так как а - отрицательное, то 1/a тоже отрицательное так как b - положительное, то 1/b тоже положительное отрицательное всегда меньше положительного значит утверждение неверно ответ: верное 3)
Нужно использовать следующие свойства числовых неравенств:
1. К обеим частям верного числового неравенства можно прибавить одно и то же число и получится верное числовое неравенство, т.е.:
если а < b и с - любое число, то a + c < b + c.
2. Обе части верного числового неравенства можно умножить (разделить) на одно и то же положительное число, при этом получиться верное числовое неравенство; если же число отрицательное, то знак неравенства изменится на противоположный, т.е.:
если а < b и с > 0, то ac < bc;
если а < b и с < 0, то ac >bc.
Таким образом, если а < b, то: 2,5а < 2,5b (2,5 > 0),
а затем и 2,5а - 7 < 2,5b - 7.
ответ: 2,5а - 7 < 2,5b - 7.