Пусть первому рабочему для выполнения всей работы требуется х дней, а
второму у дней.
За день первый рабочий выполнял 1/х всей работы, а второй 1/у всей работы.
Соответственно, за 5 дней первый сделал 5/х всей работы, а второй 5/у.
Т.к. вместе они сделали всю работу (1), то составляем уравнение:
5/х + 5/у =1.
Если первый будет работать в 2 раза быстрей, т.е. ему потребуется не х дней, а х/2 дней, а второй - в два раза медленней, т.е. 2у дней, то по условию задачи эта же работа будет выполнена за 4 дня.
Составляем уравнение:
4/(х/2) + 4/(2у) =1
Решим систему двух уравнений:
5/х + 5/у =1
4/(х/2) + 4/(2у) =1
5х+5у=ху
2х+8у=ху
5х+5у=2х+8у
3х=3у
х=у
5/х+5/х=1
10/х=1
х=10(дней)-потребуется первому рабочему для выполнения всей работы.
Пусть первому рабочему для выполнения всей работы требуется х дней, а
второму у дней.
За день первый рабочий выполнял 1/х всей работы, а второй 1/у всей работы.
Соответственно, за 5 дней первый сделал 5/х всей работы, а второй 5/у.
Т.к. вместе они сделали всю работу (1), то составляем уравнение:
5/х + 5/у =1.
Если первый будет работать в 2 раза быстрей, т.е. ему потребуется не х дней, а х/2 дней, а второй - в два раза медленней, т.е. 2у дней, то по условию задачи эта же работа будет выполнена за 4 дня.
Составляем уравнение:
4/(х/2) + 4/(2у) =1
Решим систему двух уравнений:
5/х + 5/у =1
4/(х/2) + 4/(2у) =1
5х+5у=ху
2х+8у=ху
5х+5у=2х+8у
3х=3у
х=у
5/х+5/х=1
10/х=1
х=10(дней)-потребуется первому рабочему для выполнения всей работы.
Вероятность того, что на первой кости не выпадет 3 очка, равна 5/6, а на второй кости — 5/6. Вероятность того, что на двух костей не выпадет 3 очка равна 5/6 * 5/6 = 25/36.
Вероятность того, что 3 очка появятся хотя бы на одной из костей, равна 1 - 25/36 = 11/36
ответ: 11/36.