1. За 1 - принимается весь объем работы.
Пусть X - время, которое на перепечатку рукописи затрачивает первая машинистка.
Тогда 1/ X - ее производительность.
(X - 2) - время, которое на перепечатку рукописи затрачивает вторая машинистка.
И 1/(X - 2) - ее производительность.
2. Запишем выражение для производительности совместной работы.
2 часа 24 минуты = 2 часа + 24/60 часа = 2,4 часа.
1/ X + 1 / (X - 2) = 2,4.
Решаем уравнение приведением к общему знаменателю.
X - 2 + X = 2,4 * X * X - 4,8 * X.
2,4 * X * X - 6,8 * X + 2 = 0.
3. Решаем квадратное уравнение через дискриминант.
D = 6,8 * 6,8 - 2.4 * 2 * 4 = 46,24 - 19,2 = 27,04
X1 = (6,8 + 5,2) / 4,8 = 12 / 4,8 = 2,5 часа = 2 часа 30 минут- время первой машинистки.
2,5 - 2 = 0,5 = 30 минут - время второй машинистки.
X2 = (6,8 - 5,2) / 4,8 = 1,6 / 4,8 = 1/3 часа.
(1 / 3 - 2) - величина отрицательная, этого быть не может.
Значит в задаче только одно решение.
ответ: Для перепечатки рукописи первой машинистке нужно 2 часа 30 минут, а второй - 30 минут.
Объяснение:
Выражение: 2/2-x-0.5=4/x*(2-x)
ответ: 4.5-x-8/x=0
Решаем по действиям:
1) 2/2=1
2.0|2_ _
2_ |1
0
2) 1-0.5=0.5
-1.0
_0_._5_
0.5
3) 4*(2-x)=8-4*x
4*(2-x)=4*2-4*x
3.1) 4*2=8
X4
_2_
8
4) (8-4*x)/x=8/x-4*x/x
5) x/x=1
6) 0.5-x-(8/x-4)=0.5-x-8/x+4
7) 0.5+4=4.5
+0.5
_4_._0_
4.5
Решаем по шагам:
1) 1-x-0.5-4/x*(2-x)=0
1.1) 2/2=1
2.0|2_ _
2_ |1
0
2) 0.5-x-4/x*(2-x)=0
2.1) 1-0.5=0.5
-1.0
_0_._5_
0.5
3) 0.5-x-(8-4*x)/x=0
3.1) 4*(2-x)=8-4*x
4*(2-x)=4*2-4*x
3.1.1) 4*2=8
X4
_2_
8
4) 0.5-x-(8/x-4*x/x)=0
4.1) (8-4*x)/x=8/x-4*x/x
5) 0.5-x-(8/x-4)=0
5.1) x/x=1
6) 0.5-x-8/x+4=0
6.1) 0.5-x-(8/x-4)=0.5-x-8/x+4
7) 4.5-x-8/x=0
7.1) 0.5+4=4.5
+0.5
_4_._0_
4.5