Нам дана 4-угольная пирамида, у которой все ребра равны. Значит, в основании у нее лежит квадрат. Пусть сторона квадрата равна а. Радиус круга, в который вписан квадрат, равен R = a/√2 = a√2/2 Боковые ребра пирамиды тоже равны а. Найдем ее высоту. Отрезок ОА от центра основания до угла равен радиусу, R = a/√2. OAS - это прямоугольный треугольник, AS = a; OA = a/√2. OS = H = √(AS^2 - OA^2) = √(a^2 - a^2/2) = √(a^2/2) = a/√2 = R Высота пирамиды равна радиусу описанной окружности ее основания. Это и означает, что этот радиус и есть радиус шара. То есть центр основания совпадает с центром шара.
1) Верно. У пар-грамма смежные углы в сумме равны 180, поэтому внешний угол при одном угле равен второму углу. 2) √2 ~ 1,414, 2 + 1,414 = 3,414 < 3,5 - неверно. Сумма двух любых сторон треугольника должна быть больше третьей стороны. 3) Площадь круга S(кр) = pi*D^2/4 ~ 0,785*D^2 Квадрат, вписанный в круг, имеет диагональ, равную диаметру. d = D, сторона квадрата a = d/√2 = D/√2 Площадь квадрата S(кв) = a^2 = D^2/2 Отношение S(кв)/S(кр) = (D^2/2)/(0,785*D^2) = 1/(2*0.785) ~ 0,63 Нет, неверно. 4) Верно. Этот треугольник - прямоугольный, по т. Пифагора 2 + 6 = 8 При этом √8 = 2*√2, то есть катет равен половине гипотенузы. Значит, этот катет находится против угла 30 градусов.
Значит, в основании у нее лежит квадрат. Пусть сторона квадрата равна а.
Радиус круга, в который вписан квадрат, равен R = a/√2 = a√2/2
Боковые ребра пирамиды тоже равны а. Найдем ее высоту.
Отрезок ОА от центра основания до угла равен радиусу, R = a/√2.
OAS - это прямоугольный треугольник, AS = a; OA = a/√2.
OS = H = √(AS^2 - OA^2) = √(a^2 - a^2/2) = √(a^2/2) = a/√2 = R
Высота пирамиды равна радиусу описанной окружности ее основания.
Это и означает, что этот радиус и есть радиус шара.
То есть центр основания совпадает с центром шара.