1. значение выражения. 2.прямая. 3.равны и не параллельны 4.функция вида 5.формулой вида у=kх, где х-независимая переменная, к- не равное нулю. 6.множество, на котором задается функция. в каждой точке этого множества значение функции должно быть определено . ОДЗ 7. число, стоящее посередине упорядоченного по возростанию ряда чисел. если кол-во чисел в ряду чётное, то медианой ряда является полусумма двух стоящих посередине чисел. 8.число, которое встречается в данном ряду чаще других 9. разность между наибольшим и наименьшим из этих чисел. 10.от одной переменной можно привести к виду. кол-во решений зависит от параметров а и b. 11.найти множество всех его решений или доказать, что корней нет. 12.тождество 13. чтобы к сумме двух чисел прибавить третье число можно к первому числу прибавить сумму второго и третьего числа. а+b+c 14. верными и неверными
1) Боря берет конфеты по арифметической прогрессии: 1, 3, 5, ... a1(1) = 1; d1 = 2 Миша - тоже по арифметической прогрессии a2(1) = 2; d2 = 2 Всего Боря взял S1(n) = (2a1 + d(n-1))*n/2 = (2 + 2(n-1))*n/2 = (1 + n - 1)*n = n^2 = 60 7 < n < 8 Значит, n = 7, предпоследний раз Боря взял a1(7) = 1 + 2*6 = 13. И у Бори получилось S1(7) = 7^2 = 49 конфет. Но мы знаем, что всего он взял 60 конфет. Значит, в последний раз 11. Миша последний раз взял 14. Это тоже 7-ой раз. Всего Миша взял S2(7) = (2*2 + 2*6)*7/2 = 2*8*7/2 = 56 Всего конфет было 60 + 56 = 116
2) 231 = 3*7*11 На каждом этаже квартир больше 2, но меньше 7, то есть 3. Допустим, в доме 7 этажей. Тогда в одном подъезде 3*7 = 21 квартира. Квартира номер 42 - последняя во 2 подъезде. Квартир с номерами больше 42 во 2 подъезде нет. Значит, в доме 11 этажей. Тогда в одном подъезде 3*11 = 33 квартиры. Квартира номер 42 - последняя на 3 этаже.
2.прямая.
3.равны и не параллельны
4.функция вида
5.формулой вида у=kх, где х-независимая переменная, к- не равное нулю.
6.множество, на котором задается функция. в каждой точке этого множества значение функции должно быть определено . ОДЗ
7. число, стоящее посередине упорядоченного по возростанию ряда чисел. если кол-во чисел в ряду чётное, то медианой ряда является полусумма двух стоящих посередине чисел.
8.число, которое встречается в данном ряду чаще других
9. разность между наибольшим и наименьшим из этих чисел.
10.от одной переменной можно привести к виду. кол-во решений зависит от параметров а и b.
11.найти множество всех его решений или доказать, что корней нет.
12.тождество
13. чтобы к сумме двух чисел прибавить третье число можно к первому числу прибавить сумму второго и третьего числа. а+b+c
14. верными и неверными