(Первый вариант) Cумма цифр двузначного числа равна 7 значит єто число равно либо 70, либо 61, либо 52, либо 43, либо 34, либо 25, либо 16. Так как только для числа
70-7=63
61-16=45
52-25=26
43-34=9
25-52=-27
16-61=-45
Значит данное число равно 52
ответ: 52
Либо так.(Второй вариант) Пусть цифра десятков у данного числа равна х, тогда цифра единиц равна 7-х, а само число равно 10х+(7-х)=10х+7-х=9х+7, а если переставить получим число равное 10(7-х)+х=70-10х+х=70-9х. По условию задачи составляем уравнение:
Итак, дано: квадрат любого числа есть число положительное. Запишем это математически (скобки для наглядности):
Отрицание первым раскрытие квантора. Существует число, квадрат которого неположителен. Математически:
Отрицание вторым я не знаю, как построить, важно, что приводит это к одному и тому же высказыванию в конце концов. Ну, а истинность установить однозначно нельзя. Если рассматривать это высказывание на множестве натуральных чисел, то оно истинно. Квадрат любого натурального числа положителен, потому что произведение двух положительных чисел положительно. А если, например, над целыми числами - то оно ложно. Контрпример: x = 0. Квадрат такого числа не является числом положительным. Если же рассматривать это высказывание над комплексными числами, найдутся и другие контрпримеры, например,
(Первый вариант) Cумма цифр двузначного числа равна 7 значит єто число равно либо 70, либо 61, либо 52, либо 43, либо 34, либо 25, либо 16. Так как только для числа
70-7=63
61-16=45
52-25=26
43-34=9
25-52=-27
16-61=-45
Значит данное число равно 52
ответ: 52
Либо так.(Второй вариант) Пусть цифра десятков у данного числа равна х, тогда цифра единиц равна 7-х, а само число равно 10х+(7-х)=10х+7-х=9х+7, а если переставить получим число равное 10(7-х)+х=70-10х+х=70-9х. По условию задачи составляем уравнение:
9х+7-(70-9х)=27;
9х+7-70+9х=27;
18х-63=27;
18х=27+63;
18х=90;
х=90:18
х=5
7-х=7-5=2
а значит искомое число равно 52
ответ: 52