М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
andrey455
andrey455
18.01.2021 16:33 •  Алгебра

Здрасте кто решит соч ? остались еще мозги?​


Здрасте кто решит соч ? остались еще мозги?​

👇
Открыть все ответы
Ответ:
windi37
windi37
18.01.2021

Теорема о медианах треугольника

Рассмотрим произвольный треугольник АВС.

teorema_o_medianah_treugolnikama – медиана треугольника, проведенная к стороне BC

mb – медиана треугольника, проведенная к стороне AC

mc– медиана треугольника, проведенная к стороне AB

O – центр пересечения медиан треугольника

A, B, C – вершины треугольника

 

 

Теорема о медианах треугольника формулируется следующим образом: медианы треугольника пересекаются в одной точке (на рисунке точка O) и делятся этой точкой в пропорции 2:1, если считать от вершины, с которой проведена медиана.

Все формулы по теме теорема о медианах треугольника:

Основные формулы

Формулы площадей

Формулы объемов

Формулы периметра

Геометрические фигуры

Объемные тела

Площадь поверхности

Тригонометрические формулы

Теоремы по геометрии

Теорема Пифагора

Обратная теорема Пифагора

Теорема косинусов

Теорема синусов

Теорема тангенсов

Теорема о медианах треугольника

Теорема о биссектрисе

Теорема о сумме углов треугольника

Теорема о сумме углов многоугольника

Теорема Чевы

Теорема Виета

Теорема Фалеса

4,5(60 оценок)
Ответ:
Дурачкао
Дурачкао
18.01.2021

Вариант Б1:

1

Дано:

АО=DO

<1=<2

Док-ть: тр. АОВ=тр. DOC

Доказательство:

1) <ВАО+<1 = 180° (смежные)

<CDO+<2 = 180° (смежные)

<ВАО = 180 - <1

<CDO = 180 - <2

Т.к. <1 и <2 равны (по усл.), то:

<BAO=<CDO

2) Рассмотрим тр-ки AOB и DOC:

<BAO=<CDO (доказано)

<BOA = <COD (вертик.)

AO=DO (по усл.)

Значит,

тр AOB = тр DOC

Доказано.

2

Дано:

ABCD — четырехугольник

AD=BC, AB = CD

Доказать: <А = <С

Доказательство:

1) Доп. построение — диагональ BD

2) Рассм. тр-ки ABD и CBD:

AD = BC, AB = CD (по усл.)

BD — общая.

Значит,

тр ABD = тр CBD

3) В равных треугольниках все соответствующие элементы равны.

Значит,

<A = <C

<A = <CДоказано.

3

Дано:

ABCD — четырёхугольник

BD, AC — диагонали.

тр ABC = тр CDA

Доказать: тр ABD = тр CDB

Доказательство:

1) Т. к. тр-ки ABC и CDA равны, то:

AD = BC

AB = CD

2) Рассмотрим тр-ки ABD и CDB:

AD = BC, AB = CD (док.)

BD — общая

Значит,

тр ABD = тр CDB

Доказано.

4,8(28 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ