М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nickfantom
nickfantom
11.05.2021 07:41 •  Алгебра

Во сколько раз увеличевается периметр, если его пощадь увеличевается в 9 раз? ​


Во сколько раз увеличевается периметр, если его пощадь увеличевается в 9 раз? ​

👇
Ответ:
dmitrii66613
dmitrii66613
11.05.2021

Соотношение параметров квадрата

Приведём формулы периметра Р и площади S квадрата через длину стороны а.

периметр квадрата Р равен учетверённому размеру его стороны а: Р = 4 * а;

площадь квадрата S равна квадрату его стороны а: S = a²;

периметр и площадь квадрата связаны между собой. так как в их формулах общий параметр - сторона квадрата: S = P² / 16.

Для понятного объяснения задачи увеличим по заданию его сторону в 3 раза.Тогда новая сторона квадрата станет а1 = 3 * а.

Вычисление увеличения периметра и площади квадрата

Чтобы узнать, как при этом изменились периметр и площадь квадрата, подставим в формулы Р и S вместо "а" новое значение стороны "а1". Тогда:

Р1 = 4 * а1 = 4 * (3 * а ) = 12 * а;

S1 = а1² = (3 * а)² = 9 * а².

После того, как выразили новый периметр Р1 и площадь S1 через начальное значение стороны "а", можно ответить на вопрос задания:

для вычислений используем написанные выше формулы для площади S и периметра P;

чтобы узнать, во сколько раз увеличится периметр квадрата, нужно разделить Р1 на Р;

чтобы узнать, во сколько раз увеличится площадь квадрата, нужно разделить S1 на S.

Согласно выше сказанного, ответим на вопросы задания:

во сколько раз увеличился периметр квадрата, для чего разделим (Р1 : Р) = (12 * а) : (4 * а) = 3 (раза);

во сколько раз увеличится площадь квадрата, для чего разделим (S1 : S) = (9 * а²) : (а²) = 9 (раз).

заметим, что если периметр квадрата увеличился в 3 раза, как и сторона квадрата, то площадь, увеличивается в (3)² = 9 раз.

ответ: периметр увеличится в 3 раза, площадь увеличится в 9 раз.

4,7(91 оценок)
Открыть все ответы
Ответ:
arseniy2607
arseniy2607
11.05.2021

Объяснение:

По определению арифметической прогрессией является последовательность чисел в которой каждый последующий член начиная со второго получается прибавлением к предыдущему некоторого числа

пусть исходная последовательность

a, a+d, a+2d,

что если к каждому члену этой прогрессии прибавить одно и тоже число b, то получится последовательность

a+b, a+d+b, a+2d+b,

a+b, (a+b)+d, (a+b)+d,

получилась последовательность в которой первый член равен a+b а каждый последующий получается прибавлением d что по определению является арифметической прогрессией

4,4(69 оценок)
Ответ:
PhotoBelka
PhotoBelka
11.05.2021

За властивістю геом. прогресії кожен член є середнім геометричним двох сусідніх членів:

(a_4)^2=a_1 \cdot a_{10}

Використаємо формулу a_n=a_1+d(n-1):

(a_1+3d)^2=a_1(a_1+9d)\\(12+3d)^2=12(12+9d)\\144+72d+9d^2=144+108d\\9d^2+72d-108d=0\\d^2+8d-12d=0\\d^2-4d=0\\d(d-4)=0\\d_1=0; \qquad d_2=4

Перший варіант нам підходить. Тоді матимемо стаціонарну арифметична  прогресію 12, 12, 12, 12... Стаціонарна арифметична прогресія одночасно є стаціонарною геометричною прогресією.

Другий варіант:

a_2=a_1+d=16; \qquad a_3=20; \qquad a_4=24;\\a_5=28; \qquad a_6=32

До речі, перевіримо:

a_{10}=a_1+9d=12+9 \cdot 4=48

Бачимо, що a_1, \: a_4 та a_{10} справді утворюють геометричну прогресію {12; 24; 48} зі знаменником 2.

Відповідь. Умові задовольняють дві прогресії:

1) 12, 12, 12, 12, 12, 12.

2) 12, 16, 20, 24, 28, 32.

4,6(75 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ