Найти первый положительный член арифметической прогрессии -10,2; -8,3; ...
Арифметическая прогрессия - это последовательность чисел, каждый член которой, начиная со второго, равен предыдущему, увеличенному на одно и тоже число (разность арифметической прогрессии, обозначается d).
По условию а₁ = -10,2, a₂ = -8,3, тогда d = a₂ - a₁ = -8,3 - (-10,2) = -8,3 + 10,2 = 10,2 - 8,3 = 1,9.
an = a₁ + d(n - 1) - формула n-го члена
По условию аn > 0, поэтому решим получившееся неравенство
-10,2 + 1,9(n - 1) > 0,
-10,2 + 1,9n - 1,9 > 0,
1,9n - 12,1 > 0,
1,9n > 12,1,
19n > 121,
n > 121/19 = 6 целых 7/19.
Значит, n = 7.
Найдем а₇:
а₇ = -10,2 + 1,9(7 - 1) = -10,2 + 1,9 · 6 = -10,2 + 11,4 = 11,4 - 10,2 = 1,2.
ответ: 1,2.
F(x) = x³/3 + 4x²/2 + 3x + C
Это общий вид первообразных. Их (первообразных) вообще-то тьма-тьмущая ( С - любое число)
Нам нужна одна. Её график проходит через (0;0).
Первая координата х = 0, вторая координата у = F(x) = 0
Заменим.
0 = 0 = 0 + 0 + C
C=0
Значит, наша первообразная ( единственная) имеет вид:
F(x) = x³/3 + 4x²/2 + 3x = x³/3 +2x² + 3x
2) f(x) = (1 - x)(3 + x) = x -x² -3x +3 = -x² -2x +3
F(x) = -x³/3 -2x²/2 + 3x + C = -x³/3 - x² + 3x + C
Это общий вид первообразных. Их (первообразных) вообще-то тьма-тьмущая ( С - любое число)
Нам нужна одна. Её график проходит через (0;0).
Первая координата х = 0, вторая координата у = F(x) = 0
Заменим.
0 = 0 = 0 + 0 + C
C=0
Значит, наша первообразная ( единственная) имеет вид:
F(x) = -x³/3 - x² + 3x