cn = n² - 1
проверяем все заданные числа:
1=n² - 1
n²=0
n=0, т.к. n должно ∈n, то делаем вывод, что число 1 не является членом прогрессии
2=n² - 1
n²=3
n=±√3, т.к. n должно ∈n, то делаем вывод, что число 2 не является членом прогрессии
3=n² - 1
n²=4
n=±√4 = ±2, т.к. n должно ∈n, то делаем вывод, что число 3 будет является членом прогрессии (втолрой ее член).
делаем проверку:
найдем c2: c2=4-1=3 - верно
4=n² - 1
n²=5
n=±√5, т.к. n должно ∈n, то делаем вывод, что число 4 не является членом прогрессии
ответ: число 3 является членом прогрессии
1)
{ x-3y=4
{2x-y=3
{x=3y+4
{2(3y+4)-y=3
{x=3y+4
{6y+8-y=3
{x=3y+4
{5y=3-8
{x=3y+4
{5y=-5
{x=3y+4
{y=-1
{x=3*(-1)+4
{y=-1
{x=1
{y=-1
2)
Для того, чтобы решить систему уравнений 4 * х - у = 1 и 5 * х + 3 * у = 14, выразим из первого уравнения у, получим:
4 * х - 1 = у.
Теперь подставим полученное значение у во второе уравнение и вычислим чему равен х.
5 * х + 3 * (4 * х - 1) = 14;
5 * х + 12 * х - 3 = 14;
17 * х = 14 - 12;
17 * х = 2;
х = 2/17.
Теперь найденный х подставим в первое уравнение и найдем у.
у = 4 * 2/17 - 1.
у = 8/17 - 1;
у = - 9/17.
ответ: Корни уравнения равны х = 2/17, у = - 9/17.