М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
AndHeAgaIN2
AndHeAgaIN2
17.04.2023 04:37 •  Алгебра

найти полный дифференциал dz функции z=sin (mx^2-ny^2)
n=5, m=5


найти полный дифференциал dz функции z=sin (mx^2-ny^2) n=5, m=5

👇
Ответ:
mirnillas
mirnillas
17.04.2023

10\cos(5x^2-5y^2)\cdot x\cdot dx-10\cos(5x^2-5y^2)\cdot y\cdot dy

Объяснение:

Вспомним формулу полного дифференциала

dz(x,y)=\dfrac{\partial z(x,y)}{\partial x}dx+\dfrac{\partial z(x,y)}{\partial y}dy

1 Запишем саму функцию

\sin(mx^2-ny^2)

2 Заменим переменные данными значениями

m=5,n=5

\sin(5x^2-5y^2)

3 Найдем производную по х

\dfrac{\partial (\sin(5x^2-5y^2))}{\partial x}

\cos(5x^2-5y^2)\cdot10x

4 Найдем производную по у

\dfrac{\partial (\sin(5x^2-5y^2))}{\partial y}

\cos(5x^2-5y^2)\cdot(-10y)

5 Запишем полный дифференциал

10\cos(5x^2-5y^2)\cdot x\cdot dx-10\cos(5x^2-5y^2)\cdot y\cdot dy

4,6(85 оценок)
Открыть все ответы
Ответ:
thecrazynon1098
thecrazynon1098
17.04.2023

Объяснение:

1)у=х²-9

 х²-9=0

 х²=9

 х₁,₂=±√9

  х₁,₂=±3

Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.

Таблица:

х    -4      -3      -2      -1       0       1        2       3

у     7       0      -5      -8      -9      -8      -5      0

Смотрим на график и полученные значения х₁ -3 и х₂=3.  

Вывод:    у>=0   при   х∈(-∞, -3]∪[3, ∞)              

(у больше нуля при х от - бесконечности до -3 и от 3

до + бесконечности)

(у=0  при х= -3; при х=3)

2)у=2x²-6

  2x²-6=0

  2x²=6

  x²=3

  x=±√3 (≈1,7)

Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.

Таблица:

х       -3      -2       -1       0       1       2       3

у       12       2       -4      -6      -4     2       12

Смотрим на график и полученные значения  х₁= -√3 и х₂=√3.

Вывод:     у>=0     при     х∈(-∞, -√3]∪[√3, ∞)                  

(у больше нуля от - бесконечности до -1,7 и от 1,7 до

+ бесконечности)

(у=0  при х= -√3; х=√3)

3)у=5-х²

  у= -х²+5

  -х²+5=0

   х²-5 =0

   х²=5

   х=±√5 (≈2,2)

Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.

Таблица:

х      -4     -3     -2      -1       0       1      2      3       4

у      -11     -4      1       4       5       4      1      -4      -11

Смотрим на график и полученные значения х₁= -√5 и х₂=√5.

Ветви параболы направлены вниз.

Вывод:    у>=0    при х∈[-√5, √5]

(у больше нуля от -2,2 до 2,2)

(у=0  при х= -√5;  х=√5)

4)y=6-2x²

  y= -2x²+6

  2x²=6

  x²=3

  x=±√3 (≈1,7)

Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.

Таблица:

х      -3     -2     -1       0       1        2      3

у      -12    -2     4       6       4      -2    -12

Смотрим на график и полученные значения х₁= -√3 и х₂=√3.

Ветви параболы направлены вниз.

Вывод:    у>=0    при х∈[-√3, √3]

(у больше нуля от -1,7 до 1,7)

(у=0  при х= -√3;  х=√3)

4,4(26 оценок)
Ответ:
LyusiaG
LyusiaG
17.04.2023

Объяснение:

1. Решить систему уравнений методом подстановки:

y= −4x

x−y=11

У через х выражено, осталось подставить значение у во второе уравнение и вычислить х:

х-(-4х)=11

х+4х=11

5х=11

х=2,2

у= -4*2,2= -8,8

Решение системы уравнений  х=2,2

                                                     у= -8,8

2.  Найти точку пересечения графиков, заданных формулами

7x+2y=82  

y= −2,5x    без построения.

Сначала нужно преобразовать первое уравнение в более удобный для вычислений вид:

7x+2y=82  

2у=82-7х

у=(82-7х)/2

Сейчас приравняем правые части уравнений (левые равны) и вычислим х:

(82-7х)/2= −2,5x

Умножим обе части уравнения на 2, чтобы избавиться от дробного выражения:

82-7х=2*(-2,5х)

82-7х= -5х

-7х+5х= -82

-2х= -82

х=41

Теперь подставляем вычисленное значение х в любое из двух уравнений системы и вычислим у:

у= -2,5*41= -102,5

Решение системы уравнений  х=41

                                                     у= -102,5

Координаты точки пересечения графиков данных функций (41; -102,5)

3. Решить систему уравнений

−5k=14

k+m=9

5k= -14

k= -2,8

-2,8+m=9

m=9+2,8

m=11,8

Решение системы уравнений  k= -2,8

                                                     m=11,8

4. Решить систему уравнений методом подстановки.

−z−2t+1=3

z= −6−t

Z уже выражено, осталось подставить значение z в первое уравнение и вычислить t:

-(−6−t )-2t=3-1

6+t-2t=2

-t=2-6

-t= -4

t=4

z= -6-4= -10

Решение системы уравнений  t=4

                                                     z= -10

                                             

5. Решить  систему уравнений методом подстановки:

x−2y= −8

7x−9y=7

Выразим х через у в первом уравнении и подставим выражение во второе уравнение:

х=2у-8

7(2у-8)-9у=7

14у-56-9у=7

5у=7+56

5у=63

у=12,6

х=2*12,6-8=17,2

Решение системы уравнений  х=17,2

                                                     у=12,6

4,8(15 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ