Надо решить уравнение икс в квадрате дробная черта икс плюс три равно два икс плюс три дробная черта икс плюс три.решите извините что словами, но схематично написать не смогу
Областью определения является пересечение областей определения функций корень(2x-1) и корень(2*ax - 4x^2-a) Из первой функции : 2x-1 >= 0, x >= 1/2 Выражение 2*ax - 4x^2-a - квадратичная функция, ветви параболы вниз. Тогда, необходимые условия : кв. функция 1) имеет один корень и х >=1/2, или 2) имеет два корня и больший из них равен 1/2 D = (2a)^2 - 16a = 4a(a - 4) 1) D = 0; 4a(a - 4) = 0 1.1) a = 0: - 4x^2 = 0; x = 0; не подходит 1.2) a = 4: 8x - 4x^2-4 = 0; (х-1)^2 = 0; x = 1; подходит 2) D > 0; 4a(a - 4) > 0 a Є (-00; 0) U (4; +00) x1,2 = (-2a +- корень(4a(a - 4)) ) / -8 = (a +- корень(a(a - 4)) ) / 4 x1,2 = 1/2 (a +- корень(a(a - 4)) ) / 4 = 1/2 (+- корень(a(a - 4)) ) ^ 2 = (2 - a) ^ 2 a ^ 2 - 4a = 4 + a ^ 2 - 4a 0 = 4 нет решений
Основание логарифма больше 0 и не равно 1. А подлогарифмическое выражение должно быть больше 0.
Разберемся с последним неравенством.
Это неравенство легко решить методом интервалов. Найдем нули функции:
Отсюда вытекают 3 случая. (рассматривать случай при а от 0 до 1 нет смысла, так как область определения в это случае будет в границах от 0 до 1, и 4 целых чисел тут не наберется)
Первый случай:
В этом случае при любых значениях а в рассматриваемом промежутке не будет 4 целых чисел в области определения.
Второй случай: При а = 5 вовсе не будет никакой области определения, так как
Третий случай:
В этом случае можно выделить те значения а при которых область определения функции будет содержать ровно 4 целых числа.
=============================================