Выражение: 51*cos(4)/sin(86)+8
ответ: 51*cos(4)/sin(86)+8
По шагам:
1. 51*0.997564050259824/sin(86)+8
1.1. cos(4)=0.997564050259824
2. 50.875766563251/sin(86)+8
2.1. 51*0.997564050259824~~50.875766563251
X0.997564050259824
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _5_1_ _
0997564050259824
4_9_8_7_8_2_0_2_5_1_2_9_9_1_2_0_ _ _
50.875766563251024
3. 50.875766563251/0.997564050259824+8
3.1. sin(86)=0.997564050259824
4. 51+8
4.1. 50.875766563251/0.997564050259824~~51
50.875766563251000|0_._9_9_7_5_6_4_0_5_0_2_5_9_8_2_4_ _
4_9_8_7_8_2_0_2_5_1_2_9_9_1_2_0_ |50.9
9975640502598000
8_9_7_8_0_7_6_4_5_2_3_3_8_4_1_6_
997564050259584
5. 59
5.1. 51+8=59
сначала задача: примем за х первоначальную стоимость товара, после повышения цены на 10% товар стал стоить (1+0,1)x = 1,1x потом цена быласнижена на 10% тоесть стала 1,1x - 1,1x*0,1 = 1,1x -0,11x=0,99x
нам сказано что после снижения цены товар стал стоить 1089 рублей, то есть 0,99х = 1089 ; х=1089/99*100=1100 рублей.
ответ: первоначальная стоимость товара = 1100 рублей
Теперь уравнение: x^2+5x=0; решается путём выноса общего множителя за скобку, в данном случае общий множитель это х(икс),его и вынесем. и получим х(х+5)=0
произведение двух множителей = 0 тогда, когда хотябы 1 множитель = 0
то есть
х=0 или х+5=0
х=0 или х=-5
ответ: 0;-5
1) Здесь просто нужно решить неравенство и удостовериться, что а принадлежит от -бесконечности до +бесконечности
2) Опять же решаем неравенства)
Объяснение:
В первом уверена, второе может быть выполнено неверно, но надеемся на лучшее)