д) (1,1; 1,8)
Объяснение:
Подберём интервал с возведения в квадрат, так как если
0 ≤ a < √3 < b то верно и
a² < 3 < b² (***).
а) (0; 1,1) ⇒ 0²=0 и 1,1²=1,21, не выполняется второе неравенство в (***);
б) (-0,2; 1,4) ⇒ (-0,2)²=0,04 и 1,4²=1,96, не выполняется второе неравенство в (***);
в) (1; 1,5) ⇒ 1²=1 и 1,5²=2,25, не выполняется второе неравенство в (***);
г) (0; 1,7) ⇒ 0²=0 и 1,7²=2,89, не выполняется второе неравенство в (***);
д) (1,1; 1,8) ⇒ 1,1²=1,21 и 1,8²=3,24, выполняются все неравенства в (***):
1,21 < 3 < 3,24.
сумма n последовательных нечетных натуральных чисел при n>1
1+3+5+7+...+(2n-1)=n^2
Доказательство методом математической индукции
База индукции
n=2. 1+3=2^2
Гипотеза индукции
Пусть для n=k утверждение выполняется, т.е. выполняется
1+3+5+7+...+(2k-1)=k^2
Индукционный переход. Докажем, что тогда выполняется утверждение и для n=k+1, т.е, что выполняется
1+3+5+7+...+(2k-1)+(2K+1)=(k+1)^2
1+3+5+7+...+(2k-1)+(2K+1)=используем гипотезу МИ=k^2+(2k+1)=k^2+2k+1=используем формлу квадрату двучлена=(k+1)^2, что и требовалось доказать.
По методому математической индукции формула справедлива.
Число n^2 при n>1 zвляется составным, оно делится на 1,n,n^2.
А значит сумма n последовательных нечетных натуральных чисел при n>1 является составным числом. Доказано