В решении.
Объяснение:
Моторная лодка против течения реки 308 км и вернулась в пункт отправления , затратив на обратный путь на 3 часа меньше , чем на путь против течения.
Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 3 км/ч .
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость лодки в неподвижной воде.
х + 3 - скорость лодки по течению.
х - 3 - скорость лодки против течения.
308/(х + 3) - время лодки по течению.
308/(х - 3) - время лодки против течения.
Разница во времени 3 часа, уравнение:
308/(х - 3) - 308/(х + 3) = 3
Умножить все части уравнения на (х - 3)(х + 3), чтобы избавиться от дробного выражения:
308*(х + 3) - 308*(х - 3) = 3(х - 3)(х + 3)
308х + 924 - 308х + 924 = 3х² - 27
1848 = 3х² - 27
-3х² = -27 - 1848
-3х² = -1875
х² = -1875/-3
х² = 625
х = √625
х = 25 (км/час) - скорость лодки в неподвижной воде.
Проверка:
308 : 22 = 14 (часов);
308 : 28 = 11 (часов);
14 - 11 = 3 (часа), верно.
1) 2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2) sin2x - √2/2 < 0
sin2x < √2/2
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/8 + πk < x < π/8 + πk, k ∈ Z
3) tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z